LIS009193722B2 ### (12) United States Patent Jimenez et al. ### (10) Patent No.: US 9,193,722 B2 #### (45) **Date of Patent:** Nov. 24, 2015 # (54) TRI-CYCLIC PYRAZOLOPYRIDINE KINASE INHIBITORS (71) Applicant: Vertex Pharmaceuticals Incorporated, Cambridge, MA (US) (72) Inventors: Juan-Miguel Jimenez, Abingdon (GB); John Studley, Abingdon (GB); Ronald Knegtel, Abingdon (GB); Luca Settimo, Abingdon (GB); Christopher John Davis, Abingdon (GB); Damien Fraysse, Abingdon (GB); Philip N. Collier, Arlington, MA (US); Guy Brenchley, Abingdon (GB); Dean Boyall, Abingdon (GB); Andrew Miller, Abingdon (GB); Heather Twin, Abingdon (GB); Stephen Young, Abingdon (GB) (73) Assignee: Vertex Pharmaceuticals Incorporated, Boston, MA (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. (21) Appl. No.: 13/873,591 (22) Filed: Apr. 30, 2013 (65) **Prior Publication Data** US 2013/0252939 A1 Sep. 26, 2013 #### Related U.S. Application Data - (60) Division of application No. 12/670,989, which is a continuation-in-part of application No. PCT/US2009/051437, filed on Jul. 22, 2009, now Pat. No. 8,569,337. - (60) Provisional application No. 61/163,152, filed on Mar. 25, 2009, provisional application No. 61/140,100, filed on Dec. 23, 2008, provisional application No. 61/116,032, filed on Nov. 19, 2008, provisional application No. 61/082,919, filed on Jul. 23, 2008. - (51) Int. Cl. C07D 239/24 (2006.01) C07D 241/10 (2006.01) A61K 31/496 (2006.01) A61K 31/506 (2006.01) C07D 471/04 (2006.01) C07D 519/00 (2006.01) #### (56) References Cited #### U.S. PATENT DOCUMENTS 7,135,474 B2 * 11/2006 Weigand et al. 514/256 * cited by examiner Primary Examiner — Rebecca Anderson Assistant Examiner — Karen Cheng (74) Attorney, Agent, or Firm — Booyong S. Lim #### (57) ABSTRACT The present invention relates to compounds useful as inhibitors of protein kinase. The invention also provides pharmaceutically acceptable compositions comprising said compounds and methods of using the compositions in the treatment of various disease, conditions, or disorders. The invention also provides processes for preparing compounds of the inventions. The compounds of the present invention are represented by the structure of formula I: or a pharmaceutically acceptable salt thereof, wherein the variables are defined herein. #### 21 Claims, No Drawings # TRI-CYCLIC PYRAZOLOPYRIDINE KINASE INHIBITORS ## CROSS REFERENCE TO RELATED APPLICATION This application is a divisional of U.S. application Ser. No. 12/670,989, filed Jan. 27, 2010, entitled "TRI-CYCLIC PYRAZOLOPYRIDINE KINASE INHIBITORS", which is a Continuation in Part of PCT Application No. PCT/US2009/ 10 051437, filed Jul. 22, 2009, which claims priority to U.S. provisional application Ser. Nos. 61/082,919, filed Jul. 23, 2008, 61/116,032, filed Nov. 19, 2008, and 61/140,100, filed Dec. 23, 2008, and 61/163,152, filed Mar. 25, 2009, the contents of which are incorporated herein by reference in their 15 entireties. #### BACKGROUND OF THE INVENTION Protein kinases constitute a large family of structurally 20 related enzymes that are responsible for the control of a variety of signal transduction processes within the cell (see Hardie, G. and Hanks, S. *The Protein Kinase Facts Book, I and II*, Academic Press, San Diego, Calif.: 1995). In general, protein kinases mediate intracellular signaling 25 by affecting a phosphoryl transfer from a nucleoside triphosphate to a protein acceptor that is involved in a signaling pathway. These phosphorylation events act as molecular on/off switches that can modulate or regulate the target protein biological function. These phosphorylation events are 30 ultimately triggered in response to a variety of extracellular and other stimuli. Examples of such stimuli include environmental and chemical stress signals (e.g. shock, heat shock, ultraviolet radiation, bacterial endotoxin, and H₂O₂), cytokines (e.g. interleukin-1 (IL-1) and tumor necrosis factor alpha 35 (TNF-a), and growth factors (e.g. granulocyte macrophagecolony stimulating factor (GM-CSF), and fibroblast growth factor (FGF)). An extracellular stimulus may affect one or more cellular responses related to cell growth, migration, differentiation, secretion of hormones, activation of tran- 40 scription factors, muscle contraction, glucose metabolism, control of protein synthesis, survival and regulation of the cell cycle. Kinases may be categorized into families by the substrates they phosphorylate (e.g. protein-tyrosine, protein-serine/ 45 threonine, lipids etc). Sequence motifs have been identified that generally correspond to each of these kinase families (See, for example, Hanks, S. K., Hunter, T., *FASEB J.* 1995, 9, 576-596; Knighton et al., *Science* 1991, 253, 407-414; Hiles et al, *Cell* 1992, 70, 419-429; Kunz et al, Cell 1993, 73, 50 585-596; Garcia-Bustos et al, *EMBO J* 1994, 13, 2352-2361). A serine/threonine kinase, protein kinase C-theta (PKC-theta), is a member of the novel, calcium independent PKC subfamily that is selectively expressed in T cells and skeletal muscle. Several lines of evidence indicate that PKC-theta has 55 an essential role in T cell activation. Upon antigen stimulation of T cells, PKC-theta, but not other PKC isoforms, rapidly translocates from the cytoplasm to the site of cell contact between the T cell and antigen-presenting cell (APC), where it localizes with the T cell receptor (TCR) in a region termed 60 the central supramolecular activation cluster (cSMAC) (Monks et al., 1997, Nature, 385: 83-86; Monks et al., 1998, Nature, 395: 82-86). It has been reported that PKC-theta selectively activates the transcription factors AP-1 and NF- κ B and integrates TCR and CD28 co-stimulatory signals leading to the activation of the CD28 response element (CD28RE) in the IL-2 promotor 2 (Baier-Bitterlich et al., 1996, Mol. Cell. Biol., 16: 1842-1850; Coudronniere et al., 2000, PNAS, 97: 3394-3399). The specific role for PKC-theta in CD3/CD28 co-stimulation of T cells is highlighted in a study where expression of a kinasedead PKC-theta mutant, or anti-sense PKC-theta dose-dependently inhibited CD3/CD28 co-stimulated NF-κB activation, but not TNF-alpha-stimulated NF-κB activation. This was not seen with other PKC isoforms (Lin et al., 2000, Mol. Cell. Biol., 20: 2933-2940). Recruitment of PKC-theta to the SMAC is reported to be mediated by its N-terminal regulatory domain and is necessary for T cell activation, as an overexpressed PKC-theta catalytic fragment did not translocate and was unable to activate NF-κB, whereas a PKC-theta catalytic domain-Lck membrane-binding domain chimera was able to reconstitute signaling (Bi et al., 2001, Nat. Immunol., 2:556-563). Translocation of PKC-theta to the SMAC appears to be mediated by a largely PLC-gamma/DAG-independent mechanism, involving Vav and PI3-kinase (Villalba et al., 2002, JCB 157: 253-263), whilst activation of PKC-theta requires input from several signaling components including Lck, ZAP-70, SLP-76, PLC-gamma, Vav and PI3-kinase (Liu et al., 2000, JBC, 275: 3606-3609; Herndon et al., 2001, J. Immunol., 166: 5654-5664; Dienz et al., 2002, J. Immunol., 169: 365-372; Bauer et al., 2001 JBC., 276: 31627-31634). These biochemical studies in human T cells have gained credence from studies in PKC-theta knockout mice, which have confirmed a crucial role for this enzyme in T cell function. PKC-theta-/- mice are healthy and fertile, have a normally developed immune system, but exhibit profound defects in mature T cell activation (Sun et al., 200, Nature, 404:402-407). Proliferative responses to TCR and TCR/ CD28 co-stimulation were inhibited (>90%) as were in vivo responses to antigen. In agreement with studies on human T cells, activation of the transcription factors AP-1 and NF-κB was abrogated, resulting in a severe deficit in IL-2 production and IL-2 R upregulation (Baier-Bitterlich et al., 1996, MBC, 16, 1842; Lin et al., 2000, MCB, 20, 2933; Courdonniere, 2000, 97, 3394). More recently, studies in PKC-theta-deficient mice have indicated a role for PKC-theta in the development of mouse models of autoimmune diseases, including multiple sclerosis (MS), rheumatoid arthritis (RA) and irritable bowel disease (IBD) (Salek-Ardakani et al., 2006; Tan et al., 2006; Healy et al., 2006; Anderson et al., 2006). In these models, PKC-theta-deficient mice exhibited a marked reduction in disease severity that was associated with a profound defect in the development and effector function of autoreactive T cells. In addition to its role in T cell activation, PKC-theta is reported to mediate the phorbol ester-triggered survival signal that protects T cells from Fas- and UV-induced apoptosis (Villalba et al., 2001, J. Immunol. 166: 5955-5963; Berttolotto et al., 2000, 275: 37246-37250). This pro-survival role is of interest because the human PKC-theta gene has been mapped to chromosome 10 (10p15), a region associated with mutations leading to T cell leukaemias and lymphomas (Erdel et al., 1995, Genomics 25: 295-297; Verma et al., 1987, J. Cancer Res. Clin. Oncol., 113: 192-196). In vivo, the role for PKC-theta in immune responses to infection is dependent on the type of pathogen encountered. PKC-theta deficient mice elicit normal Th1 and cytotoxic T cell-mediated responses to several viral infections and the protozoan parasite, *Leishmania major* and effectively clear these infections (Marsland et al., 2004; Berg-Brown et al., 2004; Marsland et al., 2005; Giannoni et al., 2005). However, PKC-theta deficient mice are unable to wage normal Th2 T cell responses against the parasite *Nippostrongylus brasilien*- sis and certain allergens (Marsland et al., 2004; Salek-Ardakani et al., 2004) and are unable to clear Listeria monocytogenes infection (Sakowicz-Burkiewicz et al., 2008). Clearly in some circumstances, the requirement for PKC-theta in T cell activation can be bypassed and this is likely to involve
the provision of additional signals to T cells, either from cells of the innate immune system, or directly from the pathogen in the form of pathogen associated molecular patterns (PAMPs) (Marsland et al., 2007). More recently, studies in PKC-theta-deficient mice have 10 indicated a role for PKC-theta in the development of mouse models of autoimmune diseases, including multiple sclerosis, rheumatoid arthritis and inflammatory bowel disease. In all cases where examined, PKC-theta-deficient mice exhibited a marked reduction in disease severity that was associated with 15 a profound defect in the development of a newly discovered class of T cells, Th17 cells (Salek-Ardakani et al., 2006; Tan et al., 2006; Healy et al., 2006; Anderson et al., 2006; Nagahama et al., 2008). PKC-theta therefore appears to be essential for the development of pathogenic autoreactive Th17 cells $\,^{20}$ tuted with one or more $\,^{1}$ in the context of autoimmunity. These observations support the notion that targeting PKC-theta will provide a way to target autoimmune T cell responses, leaving many T cell responses (e.g., to viral infections) intact. In addition to its role in T cell activation, PKC-theta medi- 25 ates the phorbol ester-triggered survival signal that protects T cells from Fas- and UV-induced apoptosis (Villalba et al., 2001, J. Immunol. 166: 5955-5963; Berttolotto et al., 2000, 275: 37246-37250). This pro-survival role is of interest because the human PKC-theta gene has been mapped to chro-30 mosome 10 (10p15), a region associated with mutations leading to T cell leukaemias and lymphomas (Erdel et al., 1995, Genomics 25: 295-297; Verma et al., 1987, J. Cancer Res. Clin. Oncol., 113: 192-196). Together, these data indicate that PKC-theta is an attractive 35 one or more J_b . target for therapeutic intervention in inflammatory disorders, immune disorders, lymphomas and T cell leukaemias. Accordingly, there is a great need to develop compounds useful as inhibitors of protein kinases. In particular, it would be desirable to develop compounds that are useful as inhibi- 40 tors of PKC-theta, particularly given the inadequate treatments currently available for the majority of the disorders implicated in their activation. #### SUMMARY OF THE INVENTION This invention provides, in general, compounds that are useful as kinase inhibitors. In one embodiment the compounds of the present invention are represented by structural formula I: or a pharmaceutically acceptable salt thereof. R_1 is —H, halogen, —OR', — $N(R')_2$, —C(O)OR', —C(O)N(R')₂, —NR'C(O)R', NR'C(O)OR', —CN, —NO₂, C1-C10 aliphatic optionally and independently substituted with one or more J_a, or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_b . R_2 is —H, halogen, —CN, —NO₂, —OR', —N(R')₂, -C(O)OR', $-C(O)N(R')_2$, -NR'C(O)R', -NR'C(O)OR', C1-C10 aliphatic optionally and independently substituted with one or more J_a, or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_b . Ring B is a 6-membered monocyclic heteroaromatic ring optionally fused to an aromatic or non-aromatic ring; and ring B is optionally substituted with one Y and independently further optionally and independently substituted with one or more J_c. Y is -Y1-Q1. Y1 is absent, or C1-10 aliphatic, wherein up to three methylene units of Y1 are optionally and independently replaced with G' wherein G' is -O, -C(O), -N(R'), or $-S(O)_n$ —; and Y1 is optionally and independently substi- Q1 is absent, or a C3-8 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and Q1 is optionally and independently substituted with one or more J_b ; wherein when B is substituted with Y then Y1 and Q1 are not both absent. Ring C is a 3-8-membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and ring C is optionally substituted with one Z and independently further optionally and independently substituted with Z is —Y2-Q2. Y2 is absent, or C1-10 aliphatic, wherein up to three methylene units of Y2 are optionally and independently replaced with G' wherein G' is -O-, -C(O)-, -N(R')-, or $-S(O)_p$ —; and Y2 is optionally and independently substituted with one or more J_d . Q2 is absent, C3-8 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and Q2 is optionally and independently substituted with one or more J_e; wherein when C is substituted with Z then Y2 50 and Q2 are not both absent. Each R' is independently —H, or C1-C6 alkyl optionally and independently substituted with one or more J_a . Each J_a is independently halogen, —OR, —N(R)₂, —C(O) R, -C(O)OR, $-C(O)N(R)_2$, -NRC(O)R, -NRC(O)OR, -CN, $-NO_2$, or oxo. Each J_b is independently halogen, —OR, —N(R)₂, —C(O) R, -C(O)OR, $-C(O)N(R)_2$, -NRC(O)R, -NRC(O)OR, -CN, -NO₂, oxo, or C1-C6 alkyl optionally and independently substituted with one or more J_a ; or two J_b groups on the same atom can join together to form a C3-8 membered partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur, wherein the ring is optionally and independently substituted with one or more J_a . Each J_c is independently halogen, --C(O)R, -C(O)OR', $-C(O)N(R')_2$, -NR'C(O)R', -NR'C(O)OR', -CN, -NO₂, or C1-C10 aliphatic option- ally and independently substituted with one or more J_a , or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_b . Each J_d is independently halogen, -OH, $-N(H)_2$, -C(O)H, -C(O)OH, $-C(O)N(H)_2$, -NHC(O)H, -NHC(O)OH, -NHC Each J_e is independently halogen, —OH, —N(H)₂, —C(O) H, —C(O)OH, —C(O)N(H)₂, —NHC(O)H, —NHC(O)OH, —CN, —NO₂, oxo, C1-10 aliphatic, wherein up to three methylene units are optionally and independently replaced with G' wherein G' is —O—, —C(O)—, —N(R')—, or —S(O)_p— and the aliphatic group is optionally and independently substituted with one or more J_d , or J_e is C3-8 cycloaliphatic optionally and independently substituted with one ore more J_b . Each R is independently —H or C1-C6 alkyl. Each p is independently 0, 1, or 2. In one embodiment, the present invention is a method of treating or preventing protein kinase-mediated condition in a subject, comprising administering to the subject an effective amount of a compound, a pharmaceutically acceptable salt 20 thereof, or composition of the present invention. In one embodiment the present invention is the manufacture of a compound, a pharmaceutically acceptable salt thereof, or composition of the present invention for use in treating or preventing a protein kinase-mediated condition in a subject. In another embodiment, the compounds, pharmaceutically acceptable salts thereof, and compositions of the present invention are also useful for the study of kinases in biological and pathological phenomena; the study of intracellular signal transduction pathways mediated by such kinases; and the comparative evaluation of new kinase inhibitors. #### DETAILED DESCRIPTION OF THE INVENTION This invention relates to compounds, pharmaceutically acceptable salts thereof, and compositions (such as, pharmaceutical compositions) useful as protein kinase inhibitors. In one embodiment, the compounds, pharmaceutically acceptable salts thereof, and compositions of the present invention are effective as inhibitors of PKCtheta. Compounds of this invention include those described generally herein, and are further illustrated by the classes, subclasses, and species disclosed herein. As used herein, the definitions defined herein shall apply unless otherwise indicated. For purposes of this invention, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75th Ed. Additionally, general principles of organic chemistry are described in "Organic Chemistry", Thomas Sorrell, University Science Books, Sausalito: 1999, and "March's Advanced Organic Chemistry", 5th Ed., Ed.: Smith, M. B. and March, J., John Wiley & Sons, New York: 2001, the entire contents of which are hereby incorporated by reference. In one embodiment the compounds of the present invention are represented by structural formula I: $$R_1$$ R_2 N N N N N 6 or a pharmaceutically acceptable salt thereof. R_1 is —H, halogen, —OR', —N(R')₂, —C(O)OR', —C(O) N(R')₂, —NR'C(O)R', NR'C(O)OR', —CN, —NO₂, C1-C10 aliphatic optionally and independently substituted with one or more J_a , or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_b . R_2 is —H, halogen, —CN, —NO₂, —OR', —N(R')₂, —C(O)OR', —C(O)N(R')₂, —NR'C(O)R', —NR'C(O)OR', C1-C10 aliphatic optionally and independently substituted with one or more J_a , or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_b . Ring B is a 6-membered monocyclic heteroaromatic ring optionally fused to an aromatic or non-aromatic ring; and ring B is optionally substituted with one Y and independently further optionally and independently substituted with one or more J_c . Y is —Y1-Q1. Y1 is absent, or C1-10 aliphatic, wherein up to three methylene units of Y1 are optionally and independently replaced with G' wherein G' is -O-, -C(O)-, -N(R')-, or $-S(O)_p-$; and Y1 is optionally and independently
substituted with one or more J_d . Q1 is absent, or a C3-8 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and Q1 is optionally and independently substituted with one or more J_b ; wherein B is substituted with Y then Y1 and Q1 are not both absent. Ring C is a 3-8-membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and ring C is optionally substituted with one Z and independently further optionally and independently substituted with one or more J_b. Z is —Y2-Q2. Y2 is absent, or C1-10 aliphatic, wherein up to three meth-40 ylene units of Y2 are optionally and independently replaced with G' wherein G' is —O—, —C(O)—, —N(R')—, or —S(O) $_p$ —; and Y2 is optionally and independently substituted with one or more J_d . Q2 is absent, C3-8 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and Q2 is optionally and independently substituted with one or more J_e; wherein C is substituted with Z then Y2 and Q2 are not both absent. Each R' is independently —H, or C1-C6 alkyl optionally and independently substituted with one or more J_a . Each J_a is independently halogen, —OR, —N(R)₂, —C(O) OR, —C(O)N(R)₂, —NRC(O)R, —NRC(O)OR, —CN, —NO₂, or oxo. Each J_b is independently halogen, —OR, —N(R)₂, —C(O) OR, —C(O)N(R)₂, —NRC(O)R, —NRC(O)OR, —CN, —NO₂, oxo, or C1-C6 alkyl optionally and independently substituted with one or more J_a ; or two J_b groups on the same atom can join together to form a C3-8 membered partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur, wherein the ring is optionally and independently substituted with one or more J_a ; each J_c is independently halogen, -OR', $-N(R')_2$, -C(O)OR', $C(O)N(R')_2$, -NR'C (O)R', —NR'C(O)OR', —CN, —NO2, or C1-C10 aliphatic optionally and independently substituted with one or more J_a, or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_h . Each J_d is independently halogen, —OH, —N(H)₂, 5 -C(O)H, --C(O)OH, $--C(O)N(H)_2$, --NHC(O)H, --NHC(O)OH, -CN, or $-NO_2$. Each J_e is independently halogen, —OH, —N(H)₂, —C(O) H, -C(O)OH, $-C(O)N(H)_2$, -NHC(O)H, -NHC(O)OH, -CN, -NO₂, oxo, C1-10 aliphatic, wherein up to three 10 methylene units are optionally and independently replaced with G' wherein G' is -O-, -C(O)-, -N(R')-, or $-S(O)_p$ — and the aliphatic group is optionally and independently substituted with one or more J_d , or J_e is C3-8 cycloaliphatic optionally and independently substituted with 15 one ore more J_b . Each R is independently —H or C1-C6 alkyl. Each p is independently 0, 1, or 2. In another embodiment the compounds of the present invention are represented by structural formula I: or a pharmaceutically acceptable salt thereof. $N(R')_2$, -NR'C(O)R', NR'C(O)OR', -CN, $-NO_2$, C1-C10aliphatic optionally and independently substituted with one or more J_a, or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_b . R₂ is —H, halogen, —CN, —NO₂, —OR', —N(R')₂, 40 -C(O)OR', $-C(O)N(R')_2$, -NR'C(O)R', -NR'C(O)OR', C1-C10 aliphatic optionally and independently substituted with one or more J_a , or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_b . Ring B is a 6-membered monocyclic heteroaromatic ring 45 optionally fused to an aromatic or non-aromatic ring; and ring B is optionally substituted with one Y and independently further optionally and independently substituted with one or more J_c . Y is —Y1-Q1. Y1 is absent, or C1-10 aliphatic, wherein up to three methylene units of Y1 are optionally and independently replaced with G' wherein G' is —O—, —C(O)—, —N(R')—, or $-S(O)_n$; and Y1 is optionally and independently substituted with one or more J_d . Q1 is absent, or a C3-8 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and Q1 is optionally and independently substituted with one or more J_b ; wherein Y1 and Q1 are not both 60 Ring C is a 3-8-membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or an 8-12 membered saturated, partially unsaturated, or fully 65 unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and ring C is optionally substituted with one Z and independently further optionally and independently substituted with one or more J_b . Z is —Y2-Q2. Y2 is absent, or C1-10 aliphatic, wherein up to three methylene units of Y2 are optionally and independently replaced with G' wherein G' is -O, -C(O), -N(R'), or -S(O)_n—; and Y2 is optionally and independently substituted with one or more J_d . Q2 is absent, C3-8 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and Q2 is optionally and independently substituted with one or more J_e; wherein Y2 and Q2 are not both absent. Each R' is independently —H, or C1-C6 alkyl optionally 20 and independently substituted with one or more J_a . Each J_a is independently halogen, -OR, $-N(R)_2$, -C(O) $-NO_2$, or oxo. Each J_b is independently halogen, —OR, —N(R)₂, —C(O) 25 OR, $-C(O)N(R)_2$, -NRC(O)R, -NRC(O)OR, -CN, -NO₂, oxo, or C1-C6 alkyl optionally and independently substituted with J_a ; or two J_b groups on the same atom can join together to form a C3-8 membered partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms 30 independently selected from nitrogen, oxygen, and sulfur, wherein the ring is optionally and independently substituted with one or more J_a ; Each J_c is independently halogen, —OR', —N(R')₂, -C(O)OR', $-C(O)N(R')_2$, -NR'C(O)R', -NR'C(O)OR', R_1 is —H, halogen, —OR', —N(R')₂, —C(O)OR', —C(O) 35 —CN, —NO₂, or C1-C10 aliphatic optionally and independent dently substituted with one or more J_a , or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_h . Each J_d is independently halogen, —CN, or —NO₂. Each J_e is independently halogen, —CN, —NO₂, oxo, C1-10 aliphatic, wherein up to three methylene units are optionally and independently replaced with G' wherein G' is -O, -C(O), -N(R'), or $-S(O)_p$ and the aliphatic group is optionally and independently substituted with one or more J_d, or J_e is C3-8 cycloaliphatic optionally and independently substituted with one ore more J_b . Each R is independently —H or C1-C6 alkyl. Each p is independently 0, 1, or 2. In yet another embodiment the compounds of the present 50 invention are represented by structural formula I: Ι or a pharmaceutically acceptable salt thereof. R_1 is —H, halogen, —OR', —N(R')₂, —C(O)OR', —C(O) N(R')₂, —NR'C(O)R', NR'C(O)OR', —CN, —NO₂, C1-C10 aliphatic optionally and independently substituted with one or more J_a, or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_b . R_2 is —H, halogen, —CN, —NO₂, —OR', —N(R')₂, -C(O)OR', $-C(O)N(R')_2$, -NR'C(O)R', -NR'C(O)OR', C1-C10 aliphatic optionally and independently substituted 5 with one or more J_a , or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_b. Ring B is a 6-membered monocyclic heteroaromatic ring optionally fused to an aromatic or non-aromatic ring; and ring B is optionally substituted with one Y and independently further optionally and independently substituted with one or more J_c . Y is —Y1-Q1. Y1 is absent, or C1-10 aliphatic, wherein up to three methylene units of Y1 are optionally and independently replaced 15 with G' wherein G' is -O-, -C(O)-, -N(R')-, or $-S(O)_n$; and Y1 is optionally and independently substituted with one or more J_d . Q1 is absent, or a C3-8 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 20 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and Q1 is optionally and independently substituted with one or more J_b ; wherein Y1 and Q1 are not both absent. Ring C is a 3-8-membered saturated, partially unsaturated, 25 or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur; 30 and ring C is optionally substituted with one Z and independently further optionally and independently substituted with one or more J_b . Z is -Y2-Q2 Y2 is absent, or C1-10 aliphatic, wherein up to three methylene units of Y2 are optionally and independently replaced with G' wherein G' is -O-, -C(O)-, -N(R')-, or —S(O)_p—; and Y2 is optionally and independently substituted with one or more J_d. Q2 is absent, C3-8 membered saturated, partially unsatur- 40 ated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from
nitrogen, oxygen, and sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, and sul- 45 fur; and Q2 is optionally and independently substituted with one or more J_e; wherein Y2 and Q2 are not both absent. Each R' is independently —H, or C1-C6 alkyl optionally and independently substituted with one or more J_a . OR, $-C(O)N(R)_2$, -NRC(O)R, -NRC(O)OR, -CN, -NO₂, or oxo. Each J_h is independently halogen, —OR, —N(R)₂, —C(O) OR, $-C(O)N(R)_2$, -NRC(O)R, -NRC(O)OR, -CN, -NO₂, oxo, or C1-C6 alkyl optionally and independently 55 substituted with J_a. Each J_c is independently halogen, —OR', —N(R')₂, -C(O)OR', -C(O)N(R'), -NR'C(O)R', -NR'C(O)OR', -CN, -NO₂, or C1-C10 aliphatic optionally and independently substituted with one or more Ja, or C3-C8 60 cycloaliphatic optionally and independently substituted with one or more J_b . Each J_d is independently halogen, —CN, or —NO₂. Each J_e is independently halogen, —CN, —NO₂, oxo, C1-10 aliphatic, wherein up to three methylene units are 65 optionally and independently replaced with G' wherein G' is -O—, -C(O)—, -N(R')—, or $-S(O)_p$ — and the ali10 phatic group is optionally and independently substituted with one or more J_d, or J_e is C3-8 cycloaliphatic optionally and independently substituted with one ore more J_b . Each R is independently —H or C1-C6 alkyl. Each p is independently 0, 1, or 2. In certain of the above embodiments Y2 is for example, —NH—, C1-6 alkyl optionally substituted with one or more J_d , or absent. In a first embodiment the present invention is a compound represented by structural formula I, wherein R₁ is —H, halogen, C1-C10 aliphatic optionally and independently substituted with one or more J_a, or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_b . In certain embodiments R₁ is not Cl. R₂ is —H, halogen, C1-C10 aliphatic optionally and independently substituted with one or more J_a, or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_b ; and the remainder of the variables are as described above in the preceeding embodiments. In a second embodiment the present invention is a compound represented by structural formula I, R₂ is —H; and the remainder of the variables are as described above or for the first embodiment. In a third embodiment the present invention is a compound represented by structural formula I, R₁ is —H, halogen or C1-C10 haloalkyl and the remainder of the variables are as described above or for the first or second embodiment. In certain embodiments R_1 is not Cl. In a fourth embodiment the present invention is a compound represented by structural formula II: $$(\mathbf{J}_{c})_{t}$$ $$(\mathbf{J}_{c})_{t}$$ $$(\mathbf{J}_{b})_{t}$$ $$(\mathbf{J}_{b})_{t}$$ $$(\mathbf{J}_{b})_{t}$$ $$(\mathbf{J}_{b})_{t}$$ $$(\mathbf{J}_{b})_{t}$$ or a pharmaceutically acceptable salt thereof. Each q is independently 0 or 1. Each t is independently 0, 1, or 2; or alternatively t is 0, 1 or Each I_a is independently halogen, -OR, $-N(R)_2$, -C(O) 50 more or alternatively t is 0 or 1-4 and the remainder of the variables are as described above or for one of the first through third embodiments. > In a fifth embodiment the present invention is a compound represented by structural formula I or II wherein, ring B is pyridyl, pyrazinyl, pyrimidinyl, isoquinolyl, quinazolinyl, pyridopyridyl, pyridopyradazinyl, pyrrolopyridiyl, pyrazolopyridiyl, pyrolopyrimidinyl, or pyrrolopyrazinyl, wherein ring B is optionally substituted with one Y and independently further and optionally and independently substituted with one or more J_c and the remainder of the variables are as described above or for one of the first through fourth embodiments. > In a sixth embodiment the present invention is a compound represented by structural formula I or II wherein, ring B is pyridyl, pyrazinyl, pyrimidinyl, isoquinolyl, pyrrolopyridiyl, pyrazolopyridiyl, pyrolopyrimidinyl, or pyrrolopyrazinyl, wherein ring B is optionally substituted with one Y and independently further and optionally and independently substi- tuted with one or more J_c and the remainder of the variables are as described above or for one of the first through fourth embodiments. In a seventh embodiment the present invention is a compound represented by structural formula I or II wherein, ring B is pyridyl optionally substituted with one Y and independently further and optionally and independently substituted with one or more J_c and the remainder of the variables are as described above or for one of the first through fourth embodiments In an eighth embodiment the present invention is a compound represented by structural formula I or II wherein, ring B is pyrazinyl optionally substituted with one Y' and independently further and optionally and independently substituted with one or more J_c and the remainder of the variables are as described above or for one of the first through fourth embodiments. Alternatively, ring B is pyrimidinyl optionally substituted with one Y' and independently further and optionally and independently substituted with one or more J_c and the $_{20}$ remainder of the variables are as described above or for one of the first through fourth embodiments. In a ninth embodiment the present invention is a compound represented by structural formula I or II wherein, ring C is selected from the group consisting of cyclopropyl, cyclopen- 25 tyl, cyclobutyl, cyclohexyl, cyclohexenyl, phenyl, pyridyl, pyrazinyl, pyrimidinyl, pyrrolyl, imidazolyl, pyrazolyl, oxazalolyl, oxadiazolyl, thiazolyl, thiadiazolyl, piperidinyl, piperizinyl, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, azepanyl, diazepanyl, triazepanyl, azocanyl, diazocanyl, triazocanyl, indolyl, indazolyl, benzimidazolyl, quinolyl, quinoxalyl, indolinyl, oxazolidinyl, isoxazolidinyl, thiazolidiisothiazolidinyl, oxazocanyl, oxazepanyl, azabicyclopentyl, azabicyclohexyl, azabicycloheptyl, azabicyclooctyl, azabicyclononyl, azabicyclodecyl, diazabicyclohexyl, diazabicycloheptyl, azetidinyl, isoindolinyl, isoindihvdroindazolvl. dihvdrobenzimidazolvl. morpholinyl, tetrahydropyridyl, dihydropyridyl, tetrahydropyrazinyl, dihydropyrazinyl, tetrahydropyrimidinyl, dihy- 40 dropyrimidinyl, dihydropyrrolyl, dihydropyrazolyl, dihyoctahydropyrrolopyrazyl, droimidazolyl, octahydropyrrolopyridyl, octahydropyridopyrazyl, octahydropyridopyridyl, diazabicyclooctyl, diazabicyclononyl, diazabicyclodecyl, thiazepanyl, and thiazocanyl wherein 45 each ring is independently optionally and independently substituted with one Z and independently further and optionally substituted with one or more J_b and the remainder of the variables are as described above or for one of the sixth or seventh or for any one of the first through eighth embodi- 50 In a tenth embodiment the present invention is a compound represented by structural formula I or II wherein, ring C is selected from the group consisting of cyclohexyl, diazabicyclooctyl, phenyl, pyridyl, pyrazinyl, pyrimidinyl, pyrrolyl, 55 imidazolyl, pyrazolyl, oxazalolyl, oxadiazolyl, thiazolyl, azetidinyl, morpholinyl, azepanyl, diazabicycloheptyl, diazabicyclooctyl, indolyl, tetrahydropyridyl, dihydropyridyl, octahydropyrrolopyrazyl, octahydropyrrolopyridyl, octahydropyridopyrazyl, octahydropyridopyridyl, thiadiazolyl, pip- 60 eridinyl, piperazinyl, pyrrolidinyl, diazepanyl, and oxazepanyl wherein each ring is independently optionally and independently substituted with one Z and independently further and optionally substituted with one or more J_h and the remainder of the variables are as described above or for one of 65 the sixth or seventh or for any one of the first through eighth embodiments. 12 In an eleventh embodiment the present invention is a compound represented by structural formula I or II wherein, ring C is selected from the group consisting of cyclohexyl, 3,8-diazabicyclo[3.2.1]octane, phenyl, pyridyl, piperidinyl, piperazinyl, diazepanyl, pyrrolidinyl, pyrrolyl, pyrrazolyl, azetidinyl, morpholinyl, azepanyl, 2,5 diazabicycloheptyl, diazabicyclooctyl, indolyl, tetrahydropyridyl, octahydro-1H-pyrrolo[2,3-b]pyrazyl, octahydropyrrolo[1,2-a]pyrazyl, and oxazepanyl wherein each ring is independently optionally and independently substituted with one Z and independently further and optionally substituted with one or more J_b and the remainder of the variables are as described above or for one of the sixth or seventh or for any one of the first through eighth embodiments. In a twelfth embodiment the present invention is a compound represented by structural formula I or II wherein, ring C is selected from the group consisting of piperidinyl, piperazinyl, diazapanyl, pyrrolidinyl, azetidinyl, and azepanyl, wherein each ring is independently optionally and independently substituted with one Z and independently further and optionally substituted with one or more J_b and the remainder of the variables are as described above or for one of the sixth or seventh or for any one of the first through eighth embodiments. In a thirteenth embodiment the present invention is a compound represented by structural formula I or II wherein, ring C is represented a structural formula selected from the group consisting of: $$(J_b)_t$$ $$(Z)_q \quad \text{and} \quad (Z)_q$$ q is 0 or 1. t is 0, 1 or 2, or alternatively t is 0, 1 or more or alternatively t is 0 or 1-4 and the remainder of the variables are as described above or for one of the sixth or seventh or for any one of the first through eighth embodiments. In a fourteenth embodiment the present invention is a compound represented by structural formula I or II wherein, ring C is represented by a structural formula selected from the group consisting of: q is 0 or 1. t is 0, 1 or 2, or alternatively t is 0, 1 or more or alternatively t is 0 or 1-4 and the remainder of
the variables are as described above or for one of the sixth or seventh or for any one of the first through eighth embodiments. In a fifteenth embodiment the present invention is a compound represented by structural formula I or II wherein, ring C is represented by a structural formula represented by: 50 55 $$N$$ N N $(Z)_q$ q is 0 or 1; and t is 0 or 1 or alternatively t is 0, 1 or more or alternatively t is 0 or 1-4 and the remainder of the variables are $\,$ 10 as described above or for one of the sixth or seventh or for any one of the first through eighth embodiments. In a sixteenth embodiment the present invention is a compound represented by structural formula I or II wherein, ring C is represented by a structural formula selected from the group consisting of: $$\begin{array}{c|c} & & & \\$$ q is 0 or 1. t is 0, 1 or 2, or alternatively t is 0, 1 or more or alternatively t is 0 or 1-4 and the remainder of the variables are as described above or for one of the sixth or seventh or for any one of the $_{30}$ first through eighth embodiments. In a seventeenth embodiment the present invention is a compound represented by structural formula I or II wherein, ring C is represented by a structural formula represented by: $$N$$ $(Z)_{o}$ q is 0 or 1. t is 0 or 1, or alternatively t is 0, 1 or more or alternatively 45 t is 0 or 1-4 and the remainder of the variables are as described above or for one of the sixth or seventh or for any one of the first through eighth embodiments. In particular ring C is: $$\underbrace{ \begin{array}{c} \left(\operatorname{J}_{b} \right)_{t} \\ \left(\operatorname{Z} \right)_{q} \end{array} }_{\operatorname{NH}_{2}} \operatorname{NH}_{2}$$ q is 0 or 1. t is 0 or 1, or alternatively t is 0, 1 or more or alternatively 60 t is 0 or 1-4 and the remainder of the variables are as described above or for one of the sixth or seventh or for any one of the first through eighth embodiments. In an eighteenth embodiment the present invention is a 65 compound represented by structural formula I or II wherein, ring C is represented by a structural formula represented by: q is 0 or 1. t is 0 or 1 or alternatively t is 0, 1 or more or alternatively t is 0 or 1-4 and the remainder of the variables are as described above or for one of the sixth or seventh or for any one of the first through eighth embodiments. In the structural formulas herein when, for example, $(Z)_q$ is attached to N, when q is 0 then N is NH. In an nineteenth embodiment the present invention is a compound represented by structural formula I or II wherein, R1 is halogen or C1-10 haloalkyl and the remainder of the variables are as described above or for or for any one of the first through eighth embodiments. In a twentieth embodiment the present invention is a compound represented by structural formula III: $$(Y)_{g} \xrightarrow{(J_{c})_{t}} C \xrightarrow{(Z)_{q}} (J_{b})_{t}$$ $$N \xrightarrow{N} N$$ or a pharmaceutically acceptable salt thereof, wherein, q is 1; and each t is independently is 0 or 1, or 2 or alternatively t is 0, 1 or more or alternatively t is 0 or 1-4 and the remainder of the variables are as described above or for or for any one of the first through nineteenth embodiments. In a twenty first embodiment the present invention is a compound represented by structural formula IV: $$(Z)_q$$ $$(Z)_q$$ $$(J_b)_t$$ $$N$$ $$N$$ $$N$$ $$N$$ or a pharmaceutically acceptable salt thereof, wherein q is 1; and each t is independently is 0 or 1, or 2 or alternatively t is 0, 1 or more or alternatively t is 0 or 1-4 and the remainder of the variables are as described above or for or for any one of the first through nineteenth embodiments. In a twenty second embodiment the present invention is a compound represented by structural formula I, II, III or IV wherein ring B is pyridyl substituted with one Y and independently further and optionally and independently substituted with one or more J_c and the remainder of the variables are as described above or for or for any one of the first through twenty first embodiments. In a twenty third embodiment the present invention is a compound represented by structural formula I, II, or III ⁵ wherein ring B is pyridyl substituted with one Y or by structural formula IV wherein ring B is pyridyl and the remainder of the variables are as described above or for or for any one of the first through twenty first embodiments. In a twenty fourth embodiment the present invention is a compound represented by structural formula I, II, III or IV wherein ring C is selected from the group consisting of piperidinyl, piperazinyl, or diazepanyl, substituted with one Z and independently further and optionally substituted with one or more J_b and the remainder of the variables are as described above or for or for any one of the first through twenty third embodiments. In a twenty fifth embodiment the present invention is a compound represented by structural formula I, II, III or IV $_{20}$ wherein ring C is selected from the group consisting of piperidinyl, piperazinyl, or diazepanyl, substituted with one Z and independently further and optionally substituted with one or more $\rm J_b$ and the remainder of the variables are as described above or for or for any one of the first through twenty third 25 embodiments. In a twenty sixth embodiment the present invention is a compound represented by structural formula I, II, III or IV wherein ring C is selected from the group consisting of piperidinyl, piperazinyl, or diazepanyl, substituted with one Z and the remainder of the variables are as described above or for or for any one of the first through twenty third embodiments. In a twenty seventh embodiment the present invention is a compound represented by structural formula V: $$(J_c)_n \bigvee_{N} \bigvee_{U} (U)_t$$ or a pharmaceutically acceptable salt thereof, wherein: $$\overrightarrow{\text{Tis}}$$ —CH₂—, —CH(J_b)-, —C(J_b)₂-, —NH— or —N(J_b)-. t is 0, 1, or 2. n is 0 or 1. ii is o or i w is 0 or 1. J_c is F or CF_3 . U is Z or J_b . Z is Y2-Q2. Y2 is absent or C1-6 alkyl optionally and independently substituted with one or more J_d . Q2 is C1-C6 cycloalkyl having 0-1 heteroatoms optionally and independently substituted with one or more J_e . Alternatively Q2 is absent or C3-C8 cycloalkyl having 0-1 heteroatoms optionally and independently substituted with one or more J_e . J_b is F, -OR, $-N(R)_2$, -C(O)N(R), C1-6 alkyl optionally and independently substituted with one or more J_a . J_a is F, —OR, —N(R)₂, or —C(O)N(R). Each I_d and I_e is independently —OH, —NH₂ or F and the remainder of the variables are as described above or for or for 16 any one of the first through twenty sixth embodiments. Alternatively, Jc is CN, F, Cl, or CF_3 . In a twenty eighth embodiment the present invention is a compound represented by structural formula VI: or a pharmaceutically acceptable salt thereof, wherein: T is CH₂ or NH. Alternatively T is CHNH₂ or NH. J_c is F or CF_3 . U is Z or J_b . Z is Y2-Q2. Y2 is absent or C1-6 alkyl optionally and independently substituted with one of more I_d . Q2 is C1-C6 cycloalkyl optionally and independently substituted with one or more J_e . Alternatively Q2 is absent or C3-C8 cycloalkyl having 0-1 heteroatoms optionally and independently substituted with one or more J_e . ${\bf J}_b$ is ${\bf C}_{1\text{-}6}$ alkyl optionally and independently substituted with one or more ${\bf J}_a$. J_a is -OH, $-NH_2$ or F. Alternatively, J_b is F, -OR, $-N(R)_2$, -C(O)N(R), C1-6 alkyl optionally and independently substituted with
one or more J_a ; and J_a is F, -OR, $-N(R)_2$, or -C(O)N(R). Each J_d and J_e is independently —OH, —NH₂ or F and the remainder of the variables are as described above or for any one of the twenty seventh embodiment. In a twenty ninth embodiment the present invention is a compound represented by structural formula VII: $$\begin{array}{c} \text{VII} \\ \text{I}_{c} \\ \text{N} \\ \text{N} \\ \text{N} \end{array} \begin{array}{c} \text{I}_{c} \\ \text{(U)}_{i} \end{array}$$ or a pharmaceutically acceptable salt thereof, wherein: $T \text{ is } -CH_2 -, -CH(J_b)_2, -C(J_b)_2 -, -NH - \text{ or } -N(J_b) -.$ t is 0, 1, or 2. 40 45 w is 0 or 1. J_c is CN, F, Cl, or CF₃. U is Z or J_b . Z is Y2-O2. Y2 is absent or C1-6 alkyl optionally and independently substituted with one or more J_d . Q2 is C1-C6 cycloalkyl having 0-1 heteroatoms optionally and independently substituted with one or more J_e . Alternatively Q2 is absent or C3-C8 cycloalkyl having 0-1 heteroatoms optionally and independently substituted with one or more J_e . J_b is F, —OR, —N(R)₂, —C(O)N(R), C1-6 alkyl optionally and independently substituted with one or more J_a . $$J_a$$ is F, —OR, —N(R)₂, or —C(O)N(R). Each J_d and J_e is independently —OH, —NH₂ or F and the remainder of the variables are as described above or for any one of the twenty seventh embodiment. In particular, T is -CHNH₂—, or —NH— and the remainder of the variables are as described above or for any one of the twenty seventh embodiment. In a thirtieth embodiment the present invention is a compound represented by structural formula VIII: $$\begin{array}{c|c} J_c & & & \\ & & & \\ N N$$ or a pharmaceutically acceptable salt thereof, wherein: w is 0 or 1. J_c is CN, F, CF₃; CH₂OH, CH₂(CH3)OH, or U is Z or J_b . Z is Y2-Q2. Y2 is absent or C1-6 alkyl optionally and independently substituted with one or more J_d. O2 is C1-C6 cycloalkyl having 0-1 heteroatoms optionally and independently substituted with one or more J_a. Alternatively Q2 is absent or C3-C8 cycloalkyl having 0-1 heteroatoms optionally and independently substituted with one or more J_a. J_b is F, —OR, —N(R)₂, —C(O)N(R), C1-6 alkyl optionally and independently substituted with one or more J_a. $$J_a$$ is F, —OR, —N(R)₂, or —C(O)N(R), each J_d and J_e is independently —OH, —NH₂ or F and the 55 remainder of the variables are as described above or for any one of the twenty seventh embodiment. In particular, T is —CHNH₂—, or —NH— and the remainder of the variables are as described above or for any one of the twenty seventh embodiment. As used herein "one or more" means, for example, that all substitutable carbon atoms can be substituted, for example, up to 6 carbons atoms, up to 5 carbon atoms, up to 3 carbon atoms, up to 2 carbon atoms, or one carbon atom can be substituted. In one embodiment the present invention is a compound represented the following structural formula: As described herein, a specified number range of atoms 15 includes any integer therein. For example, a group having from 1-4 atoms could have 1, 2, 3, or 4 atoms. As used here the terms "absent" and "a bond" can be used interchangeably to mean the variable does not exits in that embodiment, that is the variable does not represent an atom or groups of atoms. The term "stable", as used herein, refers to compounds that are not substantially altered when subjected to conditions to allow for their production, detection, recovery, storage, purification, and use for one or more of the purposes disclosed herein. In some embodiments, a stable compound or chemically feasible compound is one that is not substantially altered when kept at a temperature of 40° C. or less, in the absence of moisture or other chemically reactive conditions, for at least 30 a week. The term "aliphatic" or "aliphatic group", as used herein, means a straight-chain (i.e., unbranched), or branched, hydrocarbon chain that is completely saturated or that contains one or more units of unsaturation but is non-aromatic. 35 Unless otherwise specified, aliphatic groups contain 1-20 aliphatic carbon atoms. In some embodiments, aliphatic groups contain 1-10 aliphatic carbon atoms. In other embodiments, aliphatic groups contain 1-8 aliphatic carbon atoms. In still other embodiments, aliphatic groups contain 1-6 ali-40 phatic carbon atoms, and in yet other embodiments aliphatic groups contain 1-4 aliphatic carbon atoms. Aliphatic groups may be linear or branched alkyl, alkenyl, or alkynyl groups. Specific examples include, but are not limited to, methyl, ethyl, isopropyl, n-propyl, sec-butyl, vinyl, n-butanol, thinly, and tert-butyl. The term "alkyl" as used herein means a saturated straight or branched chain hydrocarbon. The term "alkenyl" as used herein means a straight or branched chain hydrocarbon comprising one or more double bonds. The term "alkynyl" as used herein means a straight or branched chain hydrocarbon comprising one or more triple bonds. The term "cycloaliphatic" (or "carbocyclic" or "carbocyclic" or "carbocyclic") refers to a non-aromatic monocyclic carbon containing ring which can be saturated or contain one or more units of unsaturation, having three to fourteen ring carbon atoms. The term includes polycyclic fused, spiro or bridged carbocyclic ring systems. The term also includes polycyclic ring systems in which the carbocyclic ring can be fused to one or more non-aromatic carbocyclic or heterocyclic rings or one or more aromatic rings or combination thereof, wherein the radical or point of attachment is on the carbocyclic ring. Fused bicyclic ring systems comprise two rings which share two adjoining ring atoms, bridged bicyclic group comprise two rings which share three or four adjacent ring atoms, spiro bicyclic ring systems share one ring atom. Examples of cycloaliphatic groups include, but are not limited to, cycloalkyl and cycloalkenyl groups. Specific examples include, but are not limited to, cyclohexyl, cyclopropentyl, cyclopropyl and cyclobutyl. The term "heterocycle" (or "heterocyclyl", or "heterocyclic") as used herein means refers to a non-aromatic monocyclic ring which can be saturated or contain one or more units of unsaturation, having three to fourteen ring atoms in which one or more ring carbons is replaced by a heteroatom such as, N, S, or O. The term includes polycyclic fused, spiro or bridged heterocyclic ring systems. The term also includes polycyclic ring systems in which the heterocyclic ring can be fused to one or more non-aromatic carbocyclic or heterocyclic rings or one or more aromatic rings or combination thereof, wherein the radical or point of attachment is on the heterocyclic ring. Examples of heterocycles include, but are not limited to, piperidinyl, piperizinyl, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, azepanyl, diazepanyl, triazepanyl, azocanyl, diazocanyl, triazocanyl, oxazolidinyl, isoxazolidinyl, thiazolidinyl, isothiazolidinyl, oxazocanyl, oxazepanyl, thiazepanyl, thiazocanyl, benzimidazolonyl, tetrahydrofura- 20 nyl, tetrahydrothiophenyl, tetrahydrothiophenyl, morpholino, including, for example, 3-morpholino, 4-morpholino, 2-thiomorpholino, 3-thiomorpholino, 4-thiomorpholino, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 1-piperazinyl, 2-piperazinyl, 3-piperazinyl, 1-pyra- 25 zolinyl, 3-pyrazolinyl, 4-pyrazolinyl, 5-pyrazolinyl, 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 2-thiazolidinyl, 3-thiazolidinyl, 4-thiazolidinyl, 1-imidazolidinyl, 2-imidazolidinyl, 4-imidazolidinyl, 5-imidazolidinyl, indolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, benzothiolanyl, benzodithianyl, dihydro-benzimidazol-2onyl, and 1,3-dihydro-imidazol-2-onyl, azabicyclopentyl, azabicyclohexyl, azabicycloheptyl, azabicyclooctyl, azabievelononyl, azabicyclodecyl, diazabicyclohexyl, diazabicycloheptyl, dihydroindazolyl, dihydrobenzimidazolyl, tetrahydropyridyl, dihydropyridyl, tetrahydropyrazinyl, dihydropyrazinyl, tetrahydropyrimidinyl, dihydropyrimidinyl, dihydropyrrolyl, dihydropyrazolyl, dihydroimidazolyl, octahydropyrrolopyrazyl, octahydropyrrolopyridyl, octahy- 40 dropyridopyrazyl, octahydropyridopyridyl, diazabicyclooctyl, diazabicyclononyl, and diazabicyclodecyl. As used herein, unless stated otherwise, bicyclic rings can be fused, spiro and bridged. The term "heteroatom" means one or more of oxygen, 45 sulfur, nitrogen, phosphorus, or silicon (including, any oxidized form of nitrogen, sulfur, phosphorus, or silicon; the quaternized form of any basic nitrogen or; a substitutable nitrogen of a heterocyclic ring, for example N (as in 3,4-dihydro-2H-pyrrolyl), NH (as in pyrrolidinyl) or NR⁺ (as in 50 N-substituted pyrrolidinyl)). The term "unsaturated", as used herein, means that a moiety has one or more units of unsaturation. The term "alkoxy", or "thioalkyl", as used herein, refers to an alkyl group, as previously defined, attached to the molecule through an oxygen ("alkoxy" e.g., —O-alkyl) or sulfur ("thioalkyl" e.g., —S-alkyl) atom. The terms "haloalkyl", "haloalkenyl", "halo aliphatic", and "haloalkoxy" (or "aminoalkyl", "hydroxyalkyl" etc.,) mean alkyl, alkenyl or alkoxy, as the case may be, substituted 60 with one or more halogen atoms. This term includes perfluorinated alkyl groups, such as —CF₃ and —CF₂CF₃. The terms "halogen", "halo", and "hal" mean F, Cl, Br, or I. The term halo aliphatic and —O(halo aliphatic) include, mono-di- and tri-halo substituted aliphatic groups. The term "aryl" used alone or as part of a larger moiety as in "a alkyl", "aralkoxy", "aryloxyalkyl", or "heteroaryl" 20 refers to carbocyclic and or heterocyclic aromatic ring systems. The term "aryl" may be used interchangeably with the term "aryl ring". Carbocyclic aromatic ring groups have only carbon ring atoms (typically six to fourteen) and include monocyclic aromatic rings such as phenyl and fused polycyclic aromatic ring systems in which two or more carbocyclic aromatic rings are fused to one another. Examples include 1-naphthyl,
2-naphthyl, 1-anthracyl and 2-anthracyl. Also included within the scope of the term "carbocyclic aromatic ring", as it is used herein, is a group in which an aromatic ring is fused to one or more non-aromatic rings (carbocyclic or heterocyclic), such as in an indanyl, phthalimidyl, naphthimidyl, phenanthridinyl, or tetrahydronaphthyl, where the radical or point of attachment is on the aromatic ring. The term "heteroaryl", "heteroaromatic", "heteroaryl ring", "heteroaryl group" and "heteroaromatic group", used alone or as part of a larger moiety as in "heteroaralkyl" or "heteroarylalkoxy", refers to heteroaromatic ring groups having five to fourteen members, including monocyclic heteroaromatic rings and polycyclic aromatic rings in which a monocyclic aromatic ring is fused to one or more other aromatic ring. Heteroaryl groups have one or more ring heteroatoms. Also included within the scope of the term "heteroaryl", as it is used herein, is a group in which an aromatic ring is fused to one or more non-aromatic rings (carbocyclic or heterocyclic), where the radical or point of attachment is on the aromatic ring. Bicyclic 6,5 heteroaromatic ring, as used herein, for example, is a six membered heteroaromatic ring fused to a second five membered ring, wherein the radical or point of attachment is on the six membered ring. Examples of heteroaryl groups include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, imidazolyl, pyrrolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl or thiadiazolyl including, for example, 2-furanyl, 3-furanyl, N-imidazolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-oxadiazolyl, 5-oxadiazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 3-pyrazolyl, 4-pyrazolyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-triazolyl, 5-triazolyl, tetrazolyl, 2-thienyl, 3-thienyl, carbazolyl, benzimidazolyl, benzothienyl, benzofuranyl, indolyl, benzotriazolyl, benzothiazolyl, benzoxazolyl, benzimidazolyl, isoquinolinyl, indolyl, isoindolyl, acridinyl, benzisoxazolyl, isothiazolyl, 1,2,3-oxadiazolyl, 1,2,5-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,3-triazolyl, 1,2,3-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, purinyl, pyrazinyl, 1,3, 5-triazinyl, quinolinyl (e.g., 2-quinolinyl, 3-quinolinyl, 4-quinolinyl), and isoquinolinyl (e.g., 1-isoquinolinyl, 3-isoquinolinyl, or 4-isoquinolinyl). The term "protecting group" and "protective group" as used herein, are interchangeable and refer to an agent used to temporarily block one or more desired functional groups in a compound with multiple reactive sites. In certain embodiments, a protecting group has one or more, or preferably all, of the following characteristics: a) is added selectively to a functional group in good yield to give a protected substrate that is b) stable to reactions occurring at one or more of the other reactive sites; and c) is selectively removable in good yield by reagents that do not attack the regenerated, deprotected functional group. As would be understood by one skilled in the art, in some cases, the reagents do not attack other reactive groups in the compound. In other cases, the reagents may also react with other reactive groups in the compound. Examples of protecting groups are detailed in Greene, T. W., Wuts, P. G in "Protective Groups in Organic Synthesis", Third Edition, John Wiley & Sons, New York: 1999 (and other editions of the book), the entire contents of which are hereby incorporated by reference. The term "nitrogen protecting group", as used herein, refers to an agent used to temporarily block one or more desired nitrogen reactive 5 sites in a multifunctional compound. Preferred nitrogen protecting groups also possess the characteristics exemplified for a protecting group above, and certain exemplary nitrogen protecting groups are also detailed in Chapter 7 in Greene, T. W., Wuts, P. G in "Protective Groups in Organic Synthesis", Third Edition, John Wiley & Sons, New York: 1999, the entire contents of which are hereby incorporated by reference. In some embodiments, where indicated a methylene unit of an aliphatic chain is optionally replaced with another atom or group. Examples of such atoms or groups include, but are not 15 also represents limited to, G which includes, -N(R'), -O, -C(O), -C(=N-CN)-, -C(=NR')--C(=NOR')-, -S---S(O)—, and $-S(O)_2$ —. These atoms or groups can be combined to form larger groups. Examples of such larger groups include, but are not limited to, —OC(O)—, —C(O) 20 $CO_{-}, -CO_{2}, -C(O)NR"_{-}, -C(=N-CN), -N(R')$ C(O)—, —N(R')C(O)O—, — $S(O)_2N(R')$ —, — $N(R')SO_2$ — -N(R')C(O)N(R'), -OC(O)N(R'), and $-N(R')SO_2N$ (R')—, wherein R' is defined herein. Only those replacement and combinations of groups that 25 result in a stable structure are contemplated. Optional replacements can occur both within the chain and/or at either end of the chain; i.e. both at the point of attachment and/or also at the terminal end. Two optional replacements can also be adjacent to each other within a chain so long as it results in 30 a chemically stable compound. In some embodiments the optional replacements can also completely replace all of the carbon atoms in a chain. For example, a C3 aliphatic can be optionally replaced by -N(R')—, —C(O)—, and —N(R')— to form —N(R')C(O) 35 N(R')— (a urea), or a C₁ aliphatic can be optionally be replaced by, for example, -O-, NH- etc. In certain instances of these embodiments the chain is a linker. Unless otherwise indicated, if the replacement occurs at the terminal end, the replacement atom is bound to an H on the 40 terminal end. For example, if—CH₂CH₂CH₃ were optionally replaced with -O-, the resulting compound could be -OCH₂CH₃, -CH₂OCH₃, or -CH₂CH₂OH, or if —CH₂CH₃ were optionally replaced with —O—, the resulting compound could be —OCH₃, or —CH₂CH₂OH, or if 45 -CH₂CH₃ were optionally replaced with —C(O)—, the resulting compound could be —C(O)CH₃, or —CH₂C(O)H. In an alternative embodiment where specified herein, aliphatic chains in which up to three (0-3) methylene groups are optionally replaced by G', wherein G' is -N(R')-, -O-, 50 -C(O)—, or $-S(O)_p$ —, (wherein R' and p are as defined herein) require at least one unreplaced methylene group (—CH(substituent)- or —CH₂—) in the chain. For example, the methylene group in a C₁ aliphatic cannot be replaced by, for example, —OH, —NH₂ etc., to give —OH and —NH₂ as 55 the substituent without any methylene group in the chain, or ii) two methylene groups in a C₂ aliphatic groups cannot be replaced by —C(O)— and —O— to give —C(O)OH. In certain instances of these alternative embodiment the chain is not a linker but rather a substituent only joined to the rest of 60 the molecule in one place. These aliphatic groups are further substituted as defined herein. Unless otherwise indicated, structures depicted herein are also meant to include all isomeric (e.g., enantiomeric, diastereomeric, geometric, conformational, and rotational) forms 65 of the structure, including mixtures thereof. For example, the R and S configurations for each asymmetric center, (Z) and (E) double bond isomers, and (Z) and (E) conformational isomers are included in this invention. As would be understood to one skilled in the art, a substituent can freely rotate around any rotatable bonds. For example, a substituent drawn Therefore, single stereochemical isomers as well as enantiomeric, diastereomeric, geometric, conformational, and rotational mixtures of the present compounds are within the scope of the invention. Unless otherwise indicated, all tautomeric forms of the compounds of the invention are within the scope of the invention. Additionally, unless otherwise indicated, structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a ¹³C- or ¹⁴C-enriched carbon are within the scope of this invention. Such compounds are useful, for example, as analytical tools or probes in biological assays. As described herein, where indicated compounds of the invention may optionally be substituted with one or more substituents, such as are illustrated generally herein, or as exemplified by particular classes, subclasses, and species of the invention. It will be appreciated that the phrase "optionally substituted" is used interchangeably with the phrase "substituted or unsubstituted." In general, the term "substituted", whether preceded by the term "optionally" or not, refers to the replacement of hydrogen radicals in a given structure with the radical of a specified substituent. Unless otherwise indicated, an optionally substituted group may have a substituent at each substitutable position of the group, and when more than one position in any given structure may be substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at every position. Only those choices and combinations of substituents that result in a stable structure are contemplated. Such choices and combinations will be apparent to those of ordinary skill in the art and may be determined without undue experimentation. The term "ring atom" is an atom such as C, N, O or S that is in the ring of an aromatic group, cycloalkyl group or nonaromatic heterocyclic ring. A "substitutable ring atom" in an aromatic or non-aromatic ring group is a ring carbon or nitrogen atom bonded to a hydrogen atom. The hydrogen can be optionally replaced with a suitable substituent group. Thus, the term "substitut- able ring atom" does not include ring nitrogen or carbon atoms which are shared when two rings are fused. In addition, "substitutable
ring atom" does not include ring carbon or nitrogen atoms when the structure depicts that they are already attached to a moiety other than hydrogen. An optionally substituted aryl group as defined herein may contain one or more substitutable ring atoms, which may be bonded to a suitable substituent. Examples of suitable substituents on a substitutable ring carbon atom of an aryl group includes R@. R@ is -Ra, -Br, -Cl, -I, -F, -ORa, 10 -SRa, —O—CORa, —CORa, —CSRa, —CN, —NO₂, -NCS, —SO₃H, —N(RaRb), —COORa, —NRcNRc-CORa, —NRcNRcCO₂Ra, —CHO, —CON(RaRb), —OC (O)N(RaRb), —CSN(RaRb), —NRcCORa, —NRcCOORa, -NRcCON(RaRb), -NRcCSRa, -NRcNRcC(O)N —C(=NRc)-N(RaRb), -NRcCSN(RaRb), (RaRb), $-C(\Longrightarrow)N(RaRb), -NRd-C(\Longrightarrow)N(RaRb), -NRcN-$ RaRb, —S(O)_pNRaRb, —NRcSO₂N(RaRb), —NRcS(O)_p Ra, —S(O)_pRa, —OS(O)_pNRaRb or —OS(O)_pRa; wherein p is 1 or 2. Ra-Rd are each independently —H, an aliphatic group, aromatic group, non-aromatic carbocyclic or heterocyclic group or —N(RaRb), taken together, form a non-aromatic heterocyclic group. The aliphatic, aromatic and non-aromatic heterocyclic group represented by Ra-Rd and the non-aromatic heterocyclic group represented by —N(RaRb) are each optionally and independently substituted with one or more groups represented by R*. Preferably Ra-Rd are unsubstituted. R⁺ is —H, a C1-C4 alkyl group, a monocyclic aryl group, a non-aromatic carbocyclic or heterocyclic group each optionally substituted with alkyl, haloalkyl, alkoxy, haloalkoxy, halogen, —CN, —NO₂, amine, alkylamine or 40 dialkylamine. Preferably R+ is unsubstituted. An optionally substituted aliphatic or a non-aromatic heterocyclic or carbocyclic group as used herein may contain one or more substituents. Examples of suitable substituents for an aliphatic group or a ring carbon of a non-aromatic 45 heterocyclic group is R". R" includes those substituents listed above for R@ and \Longrightarrow O. \Longrightarrow S. \Longrightarrow NNHR**, \Longrightarrow NN(R**)2, =NNHC(O)R**, =NNHCO2 (alkyl), =NNHSO2 (alkyl), ■NR**, spiro cycloalkyl group or fused cycloalkyl group. Each R** is independently selected from hydrogen, an 50 unsubstituted alkyl group or a substituted alkyl group. Examples of substituents on the alkyl group represented by R** include amino, alkylamino, dialkylamino, aminocarbonyl, halogen, alkyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminocarbonyloxy, dialkylaminocarbonyloxy, 55 alkoxy, nitro, cyano, carboxy, alkoxycarbonyl, alkylcarbonyl, hydroxy, haloalkoxy, or haloalkyl. When a heterocyclyl, heteroaryl, or heteroaralkyl group contains a nitrogen atom, it may be substituted or unsubstituted. When a nitrogen atom in the aromatic ring of a heteroaryl group has a substituent the nitrogen may be a quaternary nitrogen. A preferred position for substitution of a non-aromatic nitrogen-containing heterocyclic group is the nitrogen ring atom. Suitable substituents on the nitrogen of a non-aromatic 65 heterocyclic group or heteroaryl group include —R^, —N(R^)₂, C(O)R^, CO₂R^, —C(O)C(O)R^, —SO₂R^, SO₂N (R^)₂, C(=S)N(R^)₂, C(=NH)—N(R^)₂, and —NR^SO₂R^; wherein R^ is hydrogen, an aliphatic group, a substituted aliphatic group, aryl, substituted aryl, heterocyclic or carbocyclic ring or a substituted heterocyclic or carbocyclic ring. Examples of substituents on the group represented by R^include alkyl, haloalkoxy, haloalkyl, alkoxyalkyl, sulfonyl, alkylsulfonyl, halogen, nitro, cyano, hydroxy, aryl, carbocyclic or heterocyclic ring, oxo, amino, alkylamino, dialkylamino, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyloxy, alkoxy, carboxy, alkoxycarbonyl, or alkylcarbonyl. Preferably R^ is not substituted. Non-aromatic nitrogen containing heterocyclic rings that are substituted on a ring nitrogen and attached to the remainder of the molecule at a ring carbon atom are said to be N substituted. For example, an N alkyl piperidinyl group is attached to the remainder of the molecule at the two, three or four position of the piperidinyl ring and substituted at the ring nitrogen with an alkyl group. Non-aromatic nitrogen containing heterocyclic rings such as pyrazinyl that are substituted on a ring nitrogen and attached to the remainder of the molecule at a second ring nitrogen atom are said to be N' substituted-N-heterocycles. For example, an N' acyl N-pyrazinyl group is attached to the remainder of the molecule at one ring nitrogen atom and substituted at the second ring nitrogen atom with an acyl group. As used herein an optionally substituted aralkyl can be substituted on both the alkyl and the aryl portion. Unless otherwise indicated as used herein optionally substituted aralkyl is optionally substituted on the aryl portion. The compounds of the invention are defined herein by their chemical structures and/or chemical names. Where a compound is referred to by both a chemical structure and a chemical name, and the chemical structure and chemical name conflict, the chemical structure is determinative of the compound's identity. The compounds of this invention can exist in free form for treatment, or where appropriate, as a pharmaceutically acceptable salt. As used herein, the term "pharmaceutically acceptable salt" refers to salts of a compound which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue side effects, such as, toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge et al., describe pharmaceutically acceptable salts in detail in *J. Pharmaceutical Sciences*, 1977, 66, 1-19, incorporated herein by reference. Pharmaceutically acceptable salts of the compounds of this invention include those derived from suitable inorganic and organic acids and bases. These salts can be prepared in situ during the final isolation and purification of the compounds. Acid addition salts can be prepared by 1) reacting the purified compound in its free-based form with a suitable organic or inorganic acid and 2) isolating the salt thus formed. Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, glycolate, gluconate, glycolate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, palmoate, pectinate, persulfate, 3-phenyl-propionate, phosphate, picrate, pivalate, propionate, salicylate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. Base addition salts can be prepared by 1) reacting the purified compound in its acid form with a suitable organic or inorganic base and 2) isolating the salt thus formed. Salts derived from appropriate bases include alkali metal (e.g., sodium, lithium, and potassium), alkaline earth metal (e.g., 15 magnesium and calcium), ammonium and N^+ (C_{1-4} alkyl)₄ salts. This invention also envisions the quaternization of any basic nitrogen-containing groups of the compounds disclosed herein. Water or oil-soluble or dispersible products may be obtained by such quaternization. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, loweralkyl sulfonate and aryl sulfonate. Other acids and bases, 25 while not in themselves pharmaceutically acceptable, may be employed in the preparation of salts useful as intermediates in obtaining the compounds of the invention and their pharmaceutically acceptable acid or base addition salts. It should be understood that this invention includes mixtures/combinations of different pharmaceutically acceptable salts and also mixtures/combinations of compounds in free form and pharmaceutically acceptable salts. In addition to the compounds of this invention, pharmaceutically acceptable solvates (e.g., hydrates) and clathrates 35 of the compounds of this invention may also be employed in compositions to treat or prevent the herein identified disorders. As used herein, the term "pharmaceutically acceptable solvate," is a solvate formed from the association of one or more 40 pharmaceutically acceptable solvent molecules to one of the compounds the invention. The term solvate includes hydrates (e.g., hemihydrate, monohydrate, dihydrate, trihydrate, tetrahydrate, and the like). As used herein, the term "hydrate" means a compound of 45 the present invention or a salt thereof, that further includes a stoichiometric or non-stoichiometric amount of water bound by non-covalent intermolecular forces. As used herein, the term "clathrate" means a compound of the present invention or a salt thereof in the form of a crystal 50 lattice that contains spaces (e.g., channels) that have a guest molecule (e.g., a solvent or water) trapped within. In addition to the compounds of this invention, pharmaceutically acceptable derivatives or prodrugs, and esters, of the compounds of this invention may also be employed in 55 compositions to treat or prevent the
herein identified disorders As used herein and unless otherwise indicated, the term "prodrug" means a derivative of a compound that can hydrolyze, oxidize, or otherwise react under biological conditions 60 (in vitro or in vivo) to provide a compound of this invention. Prodrugs may become active upon such reaction under biological conditions, or they may have activity in their unreacted forms. Examples of prodrugs contemplated in this invention include, but are not limited to, analogs or derivatives of compounds of the invention that comprise biohydrolyzable moieties such as biohydrolyzable amides, biohydro- 26 lyzable esters, biohydrolyzable carbamates, biohydrolyzable carbonates, biohydrolyzable ureides, and biohydrolyzable phosphate analogues. Other examples of prodrugs include derivatives of compounds of the invention that comprise —NO, —NO2, —ONO, or —ONO2 moieties. Prodrugs can typically be prepared using well-known methods, such as those described by BURGER'S MEDICINAL CHEMISTRY AND DRUG DISCOVERY (1995) 172-178, 949-982 (Manfred E. Wolff ed., 5th ed). A "pharmaceutically acceptable derivative" is an adduct or derivative which, upon administration to a patient in need, is capable of providing, directly or indirectly, a compound as otherwise described herein, or a metabolite or residue thereof. Examples of pharmaceutically acceptable derivatives include, but are not limited to, esters and salts of such esters. A "pharmaceutically acceptable derivative or prodrug" includes any pharmaceutically acceptable ester, salt of an ester or other derivative or salt thereof of a compound, of this invention which, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound of this invention or an inhibitorily active metabolite or residue thereof. Particularly favoured derivatives or prodrugs are those that increase the bioavailability of the compounds of this invention when such compounds are administered to a patient (e.g., by allowing an orally administered compound to be more readily absorbed into the blood) or which enhance delivery of the parent compound to a biological compartment (e.g., the brain or lymphatic system) relative to the parent species. Pharmaceutically acceptable prodrugs of the compounds of this invention include, without limitation, esters, amino acid esters, phosphate esters, metal salts and sulfonate esters. As used herein, the phrase "side effects" encompasses unwanted and adverse effects of a therapy (e.g., a prophylactic or therapeutic agent). Side effects are always unwanted, but unwanted effects are not necessarily adverse. An adverse effect from a therapy (e.g., prophylactic or therapeutic agent) might be harmful or uncomfortable or risky. Side effects include, but are not limited to fever, chills, lethargy, gastrointestinal toxicities (including gastric and intestinal ulcerations and erosions), nausea, vomiting, neurotoxicities, nephrotoxicities, renal toxicities (including such conditions as papillary necrosis and chronic interstitial nephritis), hepatic toxicities (including elevated serum liver enzyme levels), myelotoxicities (including leukopenia, myelosuppression, thrombocytopenia and anemia), dry mouth, metallic taste, prolongation of gestation, weakness, somnolence, pain (including muscle pain, bone pain and headache), hair loss, asthenia, dizziness, extra-pyramidal symptoms, akathisia, cardiovascular disturbances and sexual dysfunction. In one embodiment the present invention is a pharmaceutical composition comprising a compound of the present invention and a pharmaceutically acceptable carrier, diluent, adjuvant or vehicle. In one embodiment the present invention is a pharmaceutical composition comprising an effective amount of compound of the present invention and a pharmaceutically acceptable carrier, diluent, adjuvant or vehicle. Pharmaceutically acceptable carriers include, for example, pharmaceutical diluents, excipients or carriers suitably selected with respect to the intended form of administration, and consistent with conventional pharmaceutical practices. A pharmaceutically acceptable carrier may contain inert ingredients which do not unduly inhibit the biological activity of the compounds. The pharmaceutically acceptable carriers should be biocompatible, e.g., non-toxic, non-inflammatory, non-immunogenic or devoid of other undesired reactions or side-effects upon the administration to a subject. Standard pharmaceutical formulation techniques can be employed. The pharmaceutically acceptable carrier, adjuvant, or vehicle, as used herein, includes any and all solvents, diluents, or other liquid vehicle, dispersion or suspension aids, 5 surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired. Remington's Pharmaceutical Sciences, Sixteenth Edition, E. W. Martin (Mack Publishing Co., Easton, Pa., 1980) discloses various carriers used in formulating pharmaceutically acceptable compositions and known techniques for the preparation thereof. Except insofar as any conventional carrier medium is incompatible with the compounds of the invention, such as by producing any undesirable biological effect or otherwise 15 interacting in a deleterious manner with any other component(s) of the pharmaceutically acceptable composition, its use is contemplated to be within the scope of this Some examples of materials which can serve as pharma- 20 ceutically acceptable carriers include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, or potassium sorbate, partial glyceride mixtures of saturated vegetable fatty 25 acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, wool fat, 30 sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oils 35 such as peanut oil, cottonseed oil; safflower oil; sesame oil; olive oil; corn oil and soybean oil; glycols; such a propylene glycol or polyethylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen- 40 free water; isotonic saline; Ringer's solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, 45 preservatives and antioxidants can also be present in the composition, according to the judgment of the formulator. The protein kinase inhibitors or pharmaceutical salts thereof may be formulated into pharmaceutical compositions for administration to a subject as defined herein. These pharmaceutical compositions, which comprise an amount of the protein inhibitor effective to treat or prevent a protein kinase-mediated condition and a pharmaceutically acceptable carrier, are another embodiment of the present invention. In one embodiment the present invention is a method of 55 treating or preventing a protein kinase-mediated disorder in a subject in need thereof, comprising administering to the subject an effective amount of a compound composition or a pharmaceutically acceptable salt of the present invention as described herein. In another embodiment, the present invention is the use of an effective amount of a compound, composition or a pharmaceutically acceptable salt described herein for treating or preventing a disease or disorder, described herein, in a subject in need thereof. In yet another embodiment, the present invention is the use of an effective 65 amount of a compound, composition or a pharmaceutically acceptable salt described herein for the manufacture of a 28 medicament method for the treatment or prevention of a disease or disorder, described herein, in a subject in need thereof. In one embodiment the protein kinase mediated disease is a protein kinase C (PKC) mediated disease. In another embodiment the protein kinase mediated disease is a protein kinase C theta (PKCtheta)-mediated disease. As used herein, the terms "subject", "patient" and "mammal" are used interchangeably. The terms "subject" and "patient" refer to an animal (e.g., a bird such as a chicken, quail or turkey, or a mammal), preferably a mammal including a non-primate (e.g., a cow, pig, horse, sheep, rabbit, guinea pig, rat, cat, dog, and mouse) and a primate (e.g., a monkey, chimpanzee and a human), and more preferably a human. In one embodiment, the subject is a non-human animal such as a farm animal (e.g., a horse, cow, pig or sheep), or a pet (e.g., a dog, cat, guinea pig or rabbit). In a preferred embodiment, the subject is a human. As used herein, an "effective amount" refers to an amount sufficient to elicit the desired biological response. In the present invention the desired biological response is to reduce or ameliorate the severity, duration, progression, or onset of a protein kinase-mediated condition, prevent the advancement of a protein kinase-mediated condition, cause the regression of a protein kinase-mediated condition, prevent the recurrence, development, onset or progression of a symptom associated with a protein kinase-mediated condition, or enhance or improve the prophylactic or therapeutic effect(s) of another therapy. The precise amount of compound administered to a subject will depend on the
mode of administration, the type and severity of the disease or condition and on the characteristics of the subject, such as general health, age, sex, body weight and tolerance to drugs. It will also depend on the degree, severity and type of protein kinase-mediated condition, and the mode of administration. The skilled artisan will be able to determine appropriate dosages depending on these and other factors. When co-administered with other agents, e.g., when co-administered with an protein kinase-mediated condition agent, an "effective amount" of the second agent will depend on the type of drug used. Suitable dosages are known for approved agents and can be adjusted by the skilled artisan according to the condition of the subject, the type of condition(s) being treated and the amount of a compound of the invention being used. In cases where no amount is expressly noted, an effective amount should be assumed. As used herein, the terms "treat", "treatment" and "treating" refer to the reduction or amelioration of the progression, severity and/or duration of a protein kinase-mediated condition, or the amelioration of one or more symptoms (preferably, one or more discernible symptoms) of a protein kinasemediated condition resulting from the administration of one or more therapies (e.g., one or more therapeutic agents such as a compound of the invention). In specific embodiments, the terms "treat", "treatment" and "treating" refer to the amelioration of at least one measurable physical parameter of a protein kinase-mediated condition. In other embodiments the terms "treat", "treatment" and "treating" refer to the inhibition of the progression of a protein kinase-mediated condition, either physically by, e.g., stabilization of a discernible symptom, physiologically by, e.g., stabilization of a physical parameter, or both. In other embodiments the terms "treat", 'treatment" and "treating" refer to the reduction or stabilization of a protein kinase-mediated condition. As used herein, the terms "prevent", "prevention" and "preventing" refer to the reduction in the risk of acquiring or developing a given protein kinase-mediated condition, or the reduction or inhibition of the recurrence or a protein kinase-mediated condition. In one embodiment, a compound of the invention is administered as a preventative measure to a patient, preferably a human, having a genetic predisposition to any of the conditions, diseases or disorders described herein. As used herein, the terms, "disease", "disorder" and "condition" may be used interchangeably here to refer to a protein kinase-mediated condition. In one aspect, the present invention provides a method for treating or lessening the severity of a disease, condition, or disorder where a protein kinase is implicated in the disease 10 state. In another aspect, the present invention provides a method for treating or lessening the severity of a kinase disease, condition, or disorder where inhibition of enzymatic activity is implicated in the treatment of the disease. In another aspect, this invention provides a method for treating or lessening the severity of a disease, condition, or disorder with compounds that inhibit enzymatic activity by binding to the protein kinase. Another aspect provides a method for treating or lessening the severity of a kinase disease, condition, or disorder by inhibiting enzymatic activity of the kinase with a protein kinase inhibitor. In some embodiments, said protein kinase inhibitor is a PKCtheta inhibitor. The term "protein kinase-mediated condition", as used herein means any disease or other deleterious condition in which a protein kinase plays a role. Such conditions include, 25 without limitation, autoimmune diseases, inflammatory diseases, proliferative and hyperproliferative diseases, immunologically-mediated diseases, immuno-deficiency disorders, immunomodulatory or immunosuppressive disorder, bone diseases, metabolic diseases, neurological and neurodegenerative diseases, cardiovascular diseases, hormone related diseases, diabetes, allergies, asthma, and Alzheimer's disease. The term "PKC-mediated condition", as used herein means any disease or other deleterious condition in which 35 PKC plays a role. Such conditions include, without limitation, those listed above, and in particular, T-cell mediated diseases, including without limitation autoimmune diseases, chronic or acute inflammatory diseases, and proliferative and hyperproliferative diseases. The term "PKCtheta-mediated condition", as used herein means any disease or other deleterious condition in which PKCtheta plays a role. Such conditions include, diseases, without limitation, those listed above, and in particular, autoimmune diseases, chronic or acute inflammatory dis- 45 eases, and proliferative and hyperproliferative diseases. As used herein, the term "inflammatory disease" or "inflammatory disorder" refers to pathological states resulting in inflammation, typically caused by leukocyte infiltration. Examples of such disorders include inflammatory skin 50 diseases, including, without limitation, psoriasis and atopic dermatitis; systemic scleroderma and sclerosis; responses associated with inflammatory bowel disease (IBD) (such as Crohn's disease and ulcerative colitis); ischemic reperfusion disorders including surgical tissue reperfusion injury, myo- 55 cardial ischemic conditions such as myocardial infarction, cardiac arrest, reperfusion after cardiac surgery and constriction after percutaneous transluminal coronary angioplasty, stroke, and abdominal aortic aneurysms; cerebral edema secondary to stroke; cranial trauma, hypovolemic shock; 60 asphyxia; adult respiratory distress syndrome; acute-lung injury; Behcet's Disease; dermatomyositis; polymyositis; multiple sclerosis (MS); dermatitis; meningitis; encephalitis; uveitis; osteoarthritis; lupus nephritis; autoimmune diseases such as rheumatoid arthritis (RA), Sjorgen's syndrome, vasculitis; diseases involving leukocyte diapedesis; central nervous system (CNS) inflammatory disorder, multiple organ 30 injury syndrome secondary to septicaemia or trauma; alcoholic hepatitis; bacterial pneumonia; antigen-antibody complex mediated diseases including glomerulonephritis; sepsis; sarcoidosis; immunopathologic responses to tissue or organ transplantation; inflammations of the lung, including pleurisy, alveolitis, vasculitis, pneumonia, chronic bronchitis, bronchiectasis, diffuse panbronchiolitis, hypersensitivity pneumonitis, idiopathic pulmonary fibrosis (IPF), and cystic fibrosis; etc. Proliferative or hyperproliferative diseases are characterized by excessive or abnormal cell proliferation. Such diseases include, without limitation, cancer and myeloproliferative disorders. The term "cancers" includes, but is not limited to, the following cancers: epidermoid Oral: Cardiac: Lung: Gastrointestinal: Genitourinary tract: Liver: Bone: Nervous system: Gynecological: Hematologic: Thyroid gland: and Adrenal glands. Hematologic cancers include: blood (myeloid leukemia [acute and chronic], acute lymphoblastic leukemia, chronic lymphocytic leukemia, myeloproliferative diseases, multiple myeloma, myelodysplastic syndrome), Hodgkin's disease, non-Hodgkin's lymphoma [malignant lymphoma] hairy cell; lymphoid disorders; Skin: malignant melanoma, basal cell carcinoma, squamous cell carcinoma, Karposi's sarcoma, keratoacanthoma, moles dysplastic nevi, lipoma, angioma, dermatofibroma, keloids, and psoriasis. Thus, the term "cancerous cell" as provided herein, includes a cell afflicted by any one of the above-identified conditions. The term "myeloproliferative disorders", includes disorders such as polycythemia vera, thrombocythemia, myeloid metaplasia with myelofibrosis, hypereosinophilic syndrome, juvenile myelomonocytic leukaemia, systemic mast cell disease, and hematopoietic disorders, in particular, acute-myelogenous leukemia (AML), chronic-myelogenous leukemia (CML), acute-promyelocytic leukemia (APL), and acute lymphocytic leukemia (ALL). Examples of neurodegenerative diseases include, without limitation, Alzheimer's disease Huntington's disease, Parkinson's disease, AIDS-associated dementia, and bipolar disorder. In one embodiment the PKCtheta mediated disease includes, without limitation, chronic inflammation, autoimmune diabetes, rheumatoid arthritis (RA), rheumatoid spondylitis, gouty arthritis and other arthritic conditions, multiple sclerosis (MS), asthma, systemic lupus erythrematosis, adult respiratory distress syndrome, Behcet's disease, psoriasis, chronic pulmonary inflammatory disease, graft versus host reaction, Crohn's Disease, ulcerative colitis, inflammatory bowel disease (IBD), which includes celiac disease and irritable bowel syndrome; Alzheimer's disease, T-cell leukaemia, lymphoma, transplant rejection, cancer and pyresis, along with any disease or disorder that relates to inflammation and related disorders. In one embodiment the PKCtheta mediated disease includes, such as, arthritis, rheumatoid arthritis, osteoarthritis, joint inflammation, lupus, multiple sclerosis, asthma, psoriasis, cancer, T-cell lymphomas, leukaemia, diabetes type I or II, and inflammatory bowel diseases, transplant rejection, Crohn's disease and colitis. Examples of autoimmune diseases include, without limitation, multiple sclerosis, rheumatoid arthritis and irritable bowel disease. The pharmaceutically acceptable compositions of this invention can be administered to humans and other animals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, or drops), bucally, as an oral or nasal spray, or the like, depending on the severity of the infection being treated. Liquid dosage forms for oral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. 5 In addition to the active compounds, the liquid dosage forms
may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, 10 propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents. Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated 20 according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. 25 Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables. The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compo- 35 sitions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use. In order to prolong the effect of a compound of the present invention, it is often desirable to slow the absorption of the compound from subcutaneous or intramuscular injection. 40 This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the compound then depends upon its rate of dissolution that, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a 45 parenterally administered compound form is accomplished by dissolving or suspending the compound in an oil vehicle. Injectable depot forms are made by forming microencapsule matrices of the compound in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of com- 50 pound to polymer and the nature of the particular polymer employed, the rate of compound release can be controlled. Examples of other biodegradable polymers include poly (orthoesters) and poly(anhydrides). Depot injectable formuliposomes or microemulsions that are compatible with body Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating 60 excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound. Solid dosage forms for oral administration include cap- 65 sules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound is mixed with at least one 32 inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar—agar, calcium carbonate. potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polethylene glycols and the like. The active compounds can also be in microencapsulated form with one or more excipients as noted above. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings and other coatings well known in the pharmaceutical formulating art. In such solid dosage forms the active compound may be admixed with at least one inert diluent such as sucrose, lactose or starch. Such dosage forms may also comprise, as is normal practice, additional substances other than inert diluents, e.g., tableting lubricants and other tableting aids such a magnesium stearate and microcrystalline cellulose. In the case of capsules, tablets and pills, the dosage forms may also comprise buffering agents. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes. Dosage forms for topical or transdermal administration of lations are also prepared by entrapping the compound in 55 a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches. The active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Ophthalmic formulation, eardrops, and eye drops are also contemplated as being within the scope of this invention. Additionally, the present invention contemplates the use of transdermal patches, which have the added advantage of providing controlled delivery of a compound to the body. Such dosage forms can be made by dissolving or dispensing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel. The compositions of the present invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. The term "parenteral" as used herein includes, but is not limited to, subcutaneous, intravenous, intramuscular, intraarticular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques. Preferably, the compositions are administered orally, intraperitoneally or intravenously. Sterile injectable forms of the compositions of this invention may be aqueous or oleaginous suspension. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a nontoxic parenterally-acceptable diluent or solvent, for example 20 as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed 25 oil may be employed including synthetic mono- or di-glycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents which are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions. Other commonly used surfactants, such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes 40 of formulation. The pharmaceutical compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions. In the case of tablets for oral use, 45 carriers commonly used include, but are not limited to, lactose and corn starch. Lubricating agents,
such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried cornstarch. When aqueous suspensions are required for oral use, 50 the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents may also be added. Alternatively, the pharmaceutical compositions of this invention may be administered in the form of suppositories 55 for rectal administration. These can be prepared by mixing the agent with a suitable non-irritating excipient which is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release the drug. Such materials include, but are not limited to, cocoa butter, beeswax and polyethylene glycols. The pharmaceutical compositions of this invention may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the 65 lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs. 34 Topical application for the lower intestinal tract can be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches may also be used. For topical applications, the pharmaceutical compositions may be formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers. Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water. Alternatively, the pharmaceutical compositions can be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2 octyldodecanol, benzyl alcohol and water. For ophthalmic use, the pharmaceutical compositions may be formulated as micronized suspensions in isotonic, pH adjusted sterile saline, or, preferably, as solutions in isotonic, pH adjusted sterile saline, either with or without a preservative such as benzylalkonium chloride. Alternatively, for ophthalmic uses, the pharmaceutical compositions may be formulated in an ointment such as petrolatum. The pharmaceutical compositions of this invention may also be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents. The dosage regimen utilizing the compounds of Structural 35 Formula I, II, III, IV, V, VI, VII or VIII can be selected in accordance with a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the renal and hepatic function of the subject; and the particular compound or salt thereof employed, the duration of the treatment; drugs used in combination or coincidental with the specific compound employed, and like factors well known in the medical arts. The skilled artisan can readily determine and prescribe the effective amount of the compound of Structural Formula I, II, III, IV, V, VI, VII or VIII required to treat, for example, to prevent, inhibit (fully or partially) or arrest the progress of the disease. Dosages of the compounds of Structural Formula I, II, III, IV, V, VI, VII or VIII can range from between about 0.01 to about 100 mg/kg body weight/day, about 0.01 to about 50 mg/kg body weight/day, about 0.1 to about 50 mg/kg body weight/day, or about 1 to about 25 mg/kg body weight/day. It is understood that the total amount per day can be administered in a single dose or can be administered in multiple dosings such as twice, three or four times per day. The compounds for use in the method of the invention can be formulated in unit dosage form. The term "unit dosage form" refers to physically discrete units suitable as unitary dosage for subjects undergoing treatment, with each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, optionally in association with a suitable pharmaceutical carrier. The unit dosage form can be for a single daily dose or one of multiple daily doses (e.g., about 1 to 4 or more times per day). When multiple daily doses are used, the unit dosage form can be the same or different for each dose. An effective amount can be achieved in the method or pharmaceutical composition of the invention employing a compound of Structural Formula I, II, III, IV, V, VI, VII or VIII 5 or a pharmaceutically acceptable salt or solvate (e.g., hydrate) thereof alone or in combination with an additional suitable therapeutic agent, for example, a cancer-therapeutic agent. When combination therapy is employed, an effective amount can be achieved using a first amount of a compound of Structural Formula I, II, III, IV, V, VI, VII or VIII or a pharmaceutically acceptable salt or solvate (e.g., hydrate) thereof and a second amount of an additional suitable therapeutic agent. In one embodiment, the compound of Structural Formula I, II, III, IV, V, VI, VII or VIII and the additional therapeutic 15 agent, are each administered in an effective amount (i.e., each in an amount which would be therapeutically effective if administered alone). In another embodiment, the compound of Structural Formula I, II, III, IV, V, VI, VII or VIII and the additional therapeutic agent, are each administered in an 20 amount which alone does not provide a therapeutic effect (a sub-therapeutic dose). In yet another embodiment, the compound of Structural Formula I, II, III, IV, V, VI, VII or VIII be administered in an effective amount, while the additional therapeutic agent is administered in a sub-therapeutic dose. In 25 still another embodiment, the compound of Structural Formula I, II, III, IV, V, VI, VII or VIII can be administered in a sub-therapeutic dose, while the additional therapeutic agent, for example, a suitable cancer-therapeutic agent is administered in an effective amount. As used herein, the terms "in combination" or "coadministration" can be used interchangeably to refer to the use of more than one therapies (e.g., one or more prophylactic and/or therapeutic agents). The use of the terms does not restrict the order in which therapies (e.g., prophylactic and/or therapeutic agents) are administered to a subject. Coadministration encompasses administration of the first and second amounts of the compounds of the coadministration in an essentially simultaneous manner, such as in a single pharmaceutical composition, for example, capsule or tablet 40 having a fixed ratio of first and second amounts, or in multiple, separate capsules or tablets for each. In addition, such coadministration also encompasses use of each compound in a sequential manner in either order. When coadministration involves the separate administra- 45 tion of the first amount of a compound of Structural Formula I, II, III, IV, V, VI, VII or VIII and a second amount of an additional therapeutic agent, the compounds are administered sufficiently close in time to have the desired therapeutic effect. For example, the period of time between each administration which can result in the desired therapeutic effect, can range from minutes to hours and can be determined taking into account the properties of each compound such as potency, solubility, bioavailability, plasma half-life and kinetic profile. For example, a compound of Structural For- 55 mula I, II, III, IV, V, VI, VII or VIII and the second therapeutic agent can be administered in any order within about 24 hours of each other, within about 16 hours of each other, within about 8 hours of each other, within about 4 hours of each other, within about 1 hour of each other or within about 30 60 minutes of each other. More, specifically, a first therapy (e.g., a prophylactic or therapeutic agent such as a compound of the invention) can be administered prior to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 65 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks 36 before), concomitantly with, or subsequent to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after) the administration of a second therapy (e.g., a prophylactic or therapeutic agent such as an anti-cancer agent) to a subject. It is understood that the method of coadministration of a first amount of a compound of Structural Formula I, II, III, IV, V, VI, VII or VIII and a second amount of an additional therapeutic agent can result in an enhanced or synergistic therapeutic effect, wherein the combined effect is greater than the additive effect that would result from separate administration of the first amount of the compound of Structural Formula I, II, III, IV, V, VI, VII or VIII and the second amount of the additional therapeutic agent. As used herein, the term "synergistic" refers to a combination of a compound of the invention and another therapy (e.g., a prophylactic
or therapeutic agent), which is more effective than the additive effects of the therapies. A synergistic effect of a combination of therapies (e.g., a combination of prophylactic or therapeutic agents) permits the use of lower dosages of one or more of the therapies and/or less frequent administration of said therapies to a subject. The ability to utilize lower dosages of a therapy (e.g., a prophylactic or therapeutic agent) and/or to administer said therapy less frequently reduces the toxicity associated with the administration of said therapy to a subject without reducing the efficacy of said therapy in the prevention, management or treatment of a disorder. In addition, a synergistic effect can result in improved efficacy of agents in the prevention, management or treatment of a disorder. Finally, a synergistic effect of a combination of therapies (e.g., a combination of prophylactic or therapeutic agents) may avoid or reduce adverse or unwanted side effects associated with the use of either therapy alone. The presence of a synergistic effect can be determined using suitable methods for assessing drug interaction. Suitable methods include, for example, the Sigmoid-Emax equation (Holford, N. H. G. and Scheiner, L. B., Clin. Pharmacokinet 6: 429-453 (1981)), the equation of Loewe additivity (Loewe, S, and Muischnek, H., Arch. Exp. Pathol Pharmacol. 114: 313-326 (1926)) and the median-effect equation (Chou, T. C. and Talalay, P., Adv. Enzyme Regul. 22: 27-55 (1984)). Each equation referred to above can be applied with experimental data to generate a corresponding graph to aid in assessing the effects of the drug combination. The corresponding graphs associated with the equations referred to above are the concentration-effect curve, isobologram curve and combination index curve, respectively. In some embodiments, said additional therapeutic agent is selected from a cancer-therapeutic agent, such as, an anticancer agent, an anti-proliferative agent, or a chemotherapeutic agent. In some embodiments, said additional therapeutic agent is selected from camptothecin, the MEK inhibitor: U0126, a KSP (kinesin spindle protein) inhibitor, adriamycin, interferons, and platinum derivatives, such as Cisplatin. In other embodiments, said additional therapeutic agent is selected from taxanes; inhibitors of bcr-abl (such as Gleevec, dasatinib, and nilotinib); inhibitors of EGFR (such as Tarceva and Iressa); DNA damaging agents (such as cisplatin, oxaliplatin, carboplatin, topoisomerase inhibitors, and anthracyclines); and antimetabolites (such as AraC and 5-FU). In yet other embodiments, said additional therapeutic agent is selected from camptothecin, doxorubicin, idarubicin, Cisplatin, taxol, taxotere, vincristine, tarceva, the MEK inhibitor, U0126, a KSP inhibitor, vorinostat, Gleevec, dasatinib, and nilotinib. In another embodiment, said additional therapeutic agent is selected from Her-2 inhibitors (such as Herceptin); HDAC 5 inhibitors (such as vorinostat), VEGFR inhibitors (such as Avastin), c-KIT and FLT-3 inhibitors (such as sunitinib), BRAF inhibitors (such as Bayer's BAY 43-9006) MEK inhibitors (such as Pfizer's PD0325901); and spindle poisons (such as Epothilones and paclitaxel protein-bound particles 10 (such as Abraxane®). Other therapies or anticancer agents that may be used in combination with the inventive agents of the present invention include surgery, radiotherapy (in but a few examples, gamma-radiation, neutron beam radiotherapy, electron beam 15 radiotherapy, proton therapy, brachytherapy, and systemic radioactive isotopes, to name a few), endocrine therapy, biologic response modifiers (interferons, interleukins, and tumor necrosis factor (TNF) to name a few), hyperthermia and cryotherapy, agents to attenuate any adverse effects (e.g., anti-20 emetics), and other approved chemotherapeutic drugs, including, but not limited to, alkylating drugs (mechlorethamine, chlorambucil, Cyclophosphamide, Melphalan, Ifosfamide), antimetabolites (Methotrexate), purine antagonists and pyrimidine antagonists (6-Mercaptopurine, 5-Fluorou- 25 racil, Cytarabile, Gemcitabine), spindle poisons (Vinblastine, Vincristine, Vinorelbine, Paclitaxel), podophyllotoxins (Etoposide, Irinotecan, Topotecan), antibiotics (Doxorubicin, Bleomycin, Mitomycin), nitrosoureas (Carmustine, Lomustine), inorganic ions (Cisplatin, Carboplatin), enzymes (As-30 paraginase), and hormones (Tamoxifen, Leuprolide, Fluta-Megestrol), Gleevec TM . adriamycin, mide, and dexamethasone, and cyclophosphamide. A compound of the instant invention may also be useful for treating cancer in combination with any of the following 35 therapeutic agents: abarelix (Plenaxis Depot®); aldesleukin (Prokine®); Aldesleukin (Proleukin®); Alemtuzumabb (Campath®); alitretinoin (Panretin®); allopurinol (Zvloprim®); altretamine (Hexylen®); amifostine (Ethyol®); anastrozole (Arimidex®); arsenic trioxide (Trisenox®); 40 asparaginase (Elspar®); azacitidine (Vidaza®); bevacuzimab (Avastin®); bexarotene capsules (Targretin®); bexarotene gel (Targretin®); bleomycin (Blenoxane®); bortezomib (Velcade®); busulfan intravenous (Busulfex®); busulfan oral (Myleran®); calusterone (Methosarb®); capecitabine (Xe- 45 loda®); carboplatin (Paraplatin®); carmustine (BCNU®, BiCNU®); carmustine (Gliadel®); carmustine with Poliferrosan 20 Implant (Gliadel Wafer®); celecoxib (Celebrex®); cetuximab (Erbitux®); chlorambucil (Leukeran®); cisplatin (Platinol®); cladribine (Leustatin®, 2-CdA®); clofarabine 50 (Clolar®); cyclophosphamide (Cytoxan®, Neosar®); cyclophosphamide (Cytoxan Injection®); cyclophosphamide (Cytoxan Tablet®); cytarabine (Cytosar-U®); cytarabine liposo-(DepoCyt®); (DTIC-Dome®); dacarbazine dactinomycin, actinomycin D (Cosmegen®); Darbepoetin 55 alfa (Aranesp®); daunorubicin liposomal (DanuoXome®); daunorubicin, daunomycin (Daunorubicin®); daunorubicin, daunomycin (Cerubidine®); Denileukin diftitox (Ontak®); dexrazoxane (Zinecard®); docetaxel (Taxotere®); doxorubicin (Adriamycin PFS®); doxorubicin (Adriamycin®, 60 Rubex®); doxorubicin (Adriamycin PFS Injection®); doxorubicin liposomal (Doxil®); dromostanolone propionate (Dromostanolone®); dromostanolone propionate (Masterone Injection®); Elliott's B Solution (Elliott's B Solution®); epirubicin (Ellence®); Epoetin alfa (Epogen®); erlotinib 65 (Tarceva®); estramustine (Emcyt®); etoposide phosphate (Etopophos®); etoposide, VP-16 (Vepesid®); exemestane 38 (Aromasin®); Filgrastim (Neupogen®); floxuridine (intraarterial) (FUDR®); fludarabine (Fludara®); fluorouracil, 5-FU (Adrucil®); fulvestrant (Faslodex®); gefitinib (Iressa®); gemcitabine (Gemzar®); gemtuzumab ozogamicin (Mylotarg®); goserelin acetate (Zoladex Implant®); goserelin acetate (Zoladex®); histrelin acetate (Histrelin Implant®); hydroxyurea (Hydrea®); Ibritumomab Tiuxetan (Zevalin®); idarubicin (Idamycin®); ifosfamide (IFEX®); imatinib mesylate (Gleevec®); interferon alfa 2a (Roferon A®); Interferon alfa-2b (Intron A®); irinotecan (Camptosar®); lenalidomide (Revlimid®); letrozole (Femara®); leucovorin (Wellcovorin®, Leucovorin®); Leuprolide Acetate (Eligard®); levamisole (Ergamisol®); lomustine, CCNU (CeeBU®); meclorethamine, nitrogen mustard (Mustargen®); megestrol acetate (Megace®); melphalan, L-PAM (Alkeran®); mercaptopurine, 6-MP (Purinethol®); mesna (Mesnex®); mesna (Mesnex Tabs®); methotrexate (Methotrexate®); methoxsalen (Uvadex®); mitomycin C (Mutamycin®); mitotane (Lysodren®); mitoxantrone (Novantrone®); nandrolone phenpropionate (Durabolin-50®); nelarabine (Arranon®); Nofetumomab (Verluma®); Oprelvekin (Neumega®); oxaliplatin (Eloxatin®); paclitaxel (Paxene®); paclitaxel (Taxol®); paclitaxel protein-bound particles (Abraxane®); palifermin (Kepivance®); pamidronate (Aredia®); pegademase (Adagen (Pegademase Bovine)®); pegaspargase (Oncaspar®); Pegfilgrastim (Neulasta®); pemetrexed disodium (Alimta®); pentostatin (Nipent®); pipobroman (Vercyte®); plicamycin, mithramycin (Mithracin®); porfimer sodium (Photofrin®); procarbazine (Matulane®); quinacrine (Atabrine®); Rasburicase (Elitek®); Rituximab (Rituxan®); sargramostim (Leukine®); Sargramostim (Prokine®); sorafenib (Nexavar®); streptozocin (Zanosar®); sunitinib maleate (Sutent®); talc (Sclerosol®); tamoxifen (Nolvadex®); temozolomide (Temodar®); teniposide, VM-26 (Vumon®); testolactone (Teslac®); thioguanine, 6-TG (Thioguanine®); thiotepa (Thioplex®); topotecan (Hycamtin®); toremifene (Fareston®); Tositumomab (Bexxar®); Tositumomab/I-131 tositumomab (Bexxar®); Trastuzumab (Herceptin®); tretinoin, ATRA (Vesanoid®); Uracil Mustard (Uracil Mustard Capsules®); valrubicin (Valstar®); vinblastine (Velban®); vincristine (Oncovin®); vinorelbine (Navelbine®); zoledronate (Zometa®) and vorinostat (Zolinza®). For a comprehensive discussion of updated cancer therapies see, http://www.nci.nih.gov/, a list of the FDA approved oncology drugs at http://wwwfda.gov/cder/cancer/druglist-frame.htm, and The Merck Manual, Seventeenth Ed. 1999, the entire contents of which are hereby incorporated by reference. Other examples of agents the compounds of this invention may also be combined with include, without limitation: treatments for Alzheimer's Disease such as Aricept® and Excelon®; treatments for Parkinson's Disease such as L-DOPA/ ropinrole, carbidopa. entacapone. pramipexole, bromocriptine, pergolide, trihexephendyl, and amantadine; agents for treating Multiple Sclerosis (MS) such as beta interferon (e.g., Avonex® and Rebif®), Copaxone®, and mitoxantrone; treatments for asthma such as albuterol and Singulair®; agents for treating schizophrenia such as zyprexa, risperdal, seroquel, and haloperidol; anti-inflammatory agents such as corticosteroids, TNF blockers, IL-1 RA, azathioprine, cyclophosphamide, and sulfasalazine; immunomodulatory and immunosuppressive agents such as cyclosporin, tacrolimus, rapamycin, mycophenolate mofetil, interferons, corticosteroids, cyclophophamide, azathioprine, and sulfasalazine; neurotrophic factors such as
acetylcholinesterase inhibitors, MAO inhibitors, interferons, anti-convulsants, ion channel blockers, riluzole, and anti-Parkinsonian agents; agents for treating cardiovascular disease such as beta-blockers, ACE inhibitors, diuretics, nitrates, calcium channel blockers, and statins; agents for treating liver disease such as corticosteroids, cholestyramine, interferons, and antiviral agents; agents for treating blood disorders such as corticosteroids, anti-leukemic agents, and growth factors; and agents for treating immunodeficiency disorders such as gamma globulin. As inhibitors of protein kinases, the compounds and compositions of this invention are also useful in biological samples. One aspect of the invention relates to inhibiting protein kinase activity in a biological sample, which method comprises contacting said biological sample with a compound of formula I, II, III, IV, V, VI, VII or VIII or a composition comprising said compound. The term "biological sample", as used herein, means an in vitro or an ex vivo sample, including, without limitation, cell cultures or extracts thereof; biopsied material obtained from a mammal or extracts thereof; and blood, saliva, urine, feces, semen, tears, or other body fluids or extracts thereof. Inhibition of protein kinase activity in a biological sample is useful for a variety of purposes that are known to one of skill in the art. Examples of such purposes include, but are not 25 limited to, blood transfusion, organ-transplantation, and biological specimen storage. Another aspect of this invention relates to the study of protein kinases in biological and pathological phenomena; the study of intracellular signal transduction pathways mediated by such protein kinases; and the comparative evaluation of new protein kinase inhibitors. Examples of such uses include, but are not limited to, biological assays such as enzyme assays and cell-based assays. The activity of the compounds as protein kinase inhibitors may be assayed in vitro, in vivo or in a cell line. In vitro assays include assays that determine inhibition of either the kinase activity or ATPase activity of the activated kinase. Alternate in vitro assays quantitate the ability of the inhibitor to bind to the protein kinase and may be measured either by radiolabelling 40 the inhibitor prior to binding, isolating the inhibitor/kinase complex and determining the amount of radiolabel bound, or by running a competition experiment where new inhibitors are incubated with the kinase bound to known radioligands. Detailed conditions for assaying a compound utilized in this 45 invention is set forth in the Examples below. Another aspect of this invention relates to the use of the compounds described here (in particular those with moderate observed affinity for biochemical targets (IC50 1-10 μ M)) as start points for chemistry optimization. In particular, one 50 aspect of this invention relates to routine inhibition studies against a target enzyme for chemical optimization. Another aspect of this invention relates to the use of the compounds described herein for crystallography (in particular those with moderate observed affinity for biochemical 55 targets): In particular, the one aspect of this invention relates to the generation of co-complex crystal structures with compounds described herein. Another aspect of this invention relates to the use of the compounds described herein as chemical tools to probe target 60 biology in vitro and in vivo: In particular inhibitors with moderate affinity in biochemical assays can be used to probe the biological impact of inhibiting a target enzyme in cells and in whole animal models of disease. Another aspect of the invention provides a method for 65 modulating enzyme activity by contacting a compound of formula I, II, III, IV, V, VI, VII or VIII with a protein kinase. #### ABBREVIATIONS The following abbreviations are used: - DMSO dimethyl sulfoxide - TCA trichloroacetic acid - ATP adenosine triphosphate - BSA bovine serum albumin - 10 DTT dithiothreitol - MOPS 4-morpholinepropanesulfonic acid - NMR nuclear magnetic resonance - HPLC high performance liquid chromatography - LCMS liquid chromatography-mass spectrometry - TLC thin layer chromatography Rt retention time In some embodiments, the compounds of this invention are represented in Table 1. In certain embodiments, the variables used herein are as defined in the specific embodiments as shown in Table 1. TABLE 1 14 35 | | | - | | |----|-------|----|-------------| | ΤA | . В Г | ж. | 1-continued | TABLE 1-continued | TABLE | 1 | -continued | |-------|---|------------| | | | | 65 | TABLE | 1- | continued | |-------|----|-----------| | | | | | ľA. | ΒL | Æ. | l-co | onti | inu | ₽d | |-----|----|----|------|------|-----|----| | | | | | | | | 50 TABLE 1-continued | TABLE 1 | -continued | |---------|------------| |---------|------------| | TABLE | 1 | -continued | |-------|---|------------| | | | | | TABLE | 1- | continued | |-------|----|-----------| | | | | 50 | TABLE | 1 | -continued | |-------|---|------------| | | | | H N N F F F $$\mathbb{R}^{N}$$ | TABLE | 1-continued | |--------------|-------------| | | | | TABLE | 1 | . 1 | |-------|------|---------| | TABLE | 1-co | ntinued | | TABLE | 1 | -continued | |-------|---|------------| | | | | | TARLE | 1 | -continued | |-------|----|------------| | IADLE | _1 | -commuea | | TABLE 1-con | tinued | |-------------|--------| |-------------|--------| 50 TABLE 1-continued TABLE 1-continued | TABLE 1-co | ontinued | |------------|----------| |------------|----------| | TABLE 1-co | ontinued | |------------|----------| |------------|----------| $$\begin{array}{c} & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$ | TAIDI | т. | | |-------|----|-------------| | TABI | Æ | 1-continued | | TADLE 1-Continued | TABLE | 1-continued | |-------------------|--------------|-------------| |-------------------|--------------|-------------| | TABLE | 1-continued | |-------|-------------| | | | F N H 289 5 $$\begin{array}{c} 311 \\ 30 \\ \hline \\ N \\ \hline \\ N \\ \end{array}$$ TABLE 1-continued H H 321 $$_{50}$$ $_{N}$ $_$ | TABLE 1-continue | TABL | Æ | -continue | |------------------|------|---|-----------| |------------------|------|---|-----------| | TARLE | E 1-con | tinued | |---------------|----------|--------| | $1\Delta DLI$ | _ I -COH | unucu | | TABLE | 1-continued | |--------------|-------------| | | | H O N $$F$$ F F F F H 404 25 H 30 30 35 10 $$\begin{array}{c} & & & \\ &
& & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$ H 412 $$_{50}$$ N H $_{N}$ H $_{N}$ 60 $$\begin{array}{c} H \\ O \\ N \end{array}$$ H $$O$$ N F F F $$\begin{array}{c} H \\ O \\ N \end{array}$$ | TABL | .Н. 1-с | continued | |------|---------|-----------| H 432 H 5 N F F 10 N N H H $$\frac{1}{N}$$ $\frac{1}{N}$ $\frac{$ | TABLE | 1-continued | |-------|-------------| | IADLE | 1-continued | $$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$ $$F = \begin{pmatrix} M & M \\ M$$ H 454 $$N - H$$ $N - H$ $N - H$ 45 469 470 25 30 Η Η ## General Schemes: ## EXAMPLES Mass spec. samples were analyzed on a MicroMass Quattro Micro mass spectrometer operated in single MS mode with electrospray ionization. Samples were introduced into the mass spectrometer using chromatography. Mobile phase for all mass spec. analyses consisted of 10 mM pH 7 ammonium acetate and a 1:1 acetonitrile-methanol mixture. Method A: Column gradient conditions were 5%-100% acetonitrile-methanol over 3.5 mins gradient time and 4.8 mins run time on an ACE5C8 3.0×75 mm column. Flow rate was 1.2 ml/min. Method B: Column gradient were 5%-100%acetonitrile-methanol over 10 mins gradient time and 12 mins run time on a ACE5C8 4.6×150 mm column. Flow rate was 1.5 mL/min. As used herein, the term "Rt(min)" refers to the LCMS retention time, in minutes, associated with the compound. Unless otherwise indicated, the LCMS method utilized to obtain the reported retention time is as detailed above. If the Rt(min) is <5 min method A was used, if the Rt(min) is >5 min then method B was used. 158 1H-NMR spectra were recorded at 400 MHz using a Bruker DPX 400 instrument. The following compounds of formula I, II, III, IV, V, VII or VIII can be prepared and analyzed as follows: N F H N N H In one embodiment, Compound 445 is represented as follows: # General Synthetic Methodology The compounds of this invention may be prepared in light of the specification using steps generally known to those of ordinary skill in the art. Those compounds may be analyzed by known methods, including but not limited to LCMS (liquid chromatography mass spectrometry) HPLC and NMR (nuclear magnetic resonance). It should be understood that the specific conditions shown below are only examples, and are not meant to limit the scope of the conditions that can be used for making compounds of this invention. Instead, this invention also includes conditions that would be apparent to those skilled in that art in light of this specification for making 65 the compounds of this invention. Unless otherwise indicated, all variables in the following schemes are as defined herein. Scheme I -continued H N N N $$(Y)_q$$ J_c J_c 5 N W W E Reagents and conditions: a) n-BuLi or Grignard reagent, -78° C. to 0° C., THF; b) NH2NH2, THF, 80° C.; c) K2CO3, DMF, 110° C. or Pd(OAc)₂, NaOtBu, DME, ligand, 90° C. Scheme I above shows a general route for the preparation of compounds of formula E, wherein the variables, are as defined herein and N(W), forms ring C as defined herein. The weinreb amide A is coupled with compound B in the presence $_{20}$ of n-butyl lithium or Grignard reagent to form a compound of formula C. Compound C is then heated in the presence of hydrazine to yield intermediate D. The compound of formula D is displaced by an optionally protected amine in the presence of suitable base, such as, potassium carbonate, diisopro- 25 pylethylamine (DIPEA), triethylamine, 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU) etc., in a suitable solvent, such as for example, dimethylformamide, dimethylsulfoxide (DMSO), n-butanol (n-Bu-OH) etc., at about 70° C. to about $110^{\rm o}$ C., about $80^{\rm o}$ C. to about $100^{\rm o}$ C., about $90^{\rm o}$ C. to about $^{-30}$ 100° C. to form an amine substituted heteroaroyl pyrazolopyridine. Alternatively the displacement can be perform using Buchwall type condition using Pd as catalyst and a series of bases and ligands well known by those skilled in the art Scheme II Reagents and conditions: a) n-BuLi or Grignard reagent, $\,^{60}$ –78° C. to 0° C., THF; b))TFA, Et3SiH, 0C. Scheme 2 above shows a general route for the preparation of compounds of formula H, wherein R_1 , R_2Y , Z, and ring B are as defined herein. The halogen derivative F is coupled 65 with piperidone derivatives G in the presence of n-butyl lithium or Grignard reagent to form a compound then subse- quently is then treated in acidic conditions to remove the protecting groups to yield the desired compound H. #### Example 1 (S)-3-(6-(3-isobutylpiperazin-1-yl)pyridin-2-yl)-1Hpyrazolo[3,4-b]pyridine (Compound No. 7) A 2.5M BuLi solution in hexane (55 ml, 131 mmol, 1.05 eq.) was added dropwise over 20 minutes to a grey suspension of dibromopyridine (31 g, 137 mmol, 1 eq) in THF (300 ml), cooled to T<-90° C. under N2 (lig.N2/Et2O bath). Temperature was kept at -95° C.<T<-90° C. during the addition. Before the end of the addition, the suspension turned into a straw yellow colored solution. Stirred at T<-90° C. for 10 min. A solution of the Weinreb (25 g, 137 mmol, 1.05 eq.) derivative in THF (20 ml) was added dropwise over 15 min. Stirred at -90° C. for 1 h. The reaction mixture was guenched at -90° C. with a saturated NH₄Cl aqueous solution (20 ml). The reaction mixture was diluted with diethyl ether (400 ml) and washed with a saturated sodium bicarbonate aqueous solution (100 ml) and brine (100 ml). The organic layer was dried over magnesium sulfate and concentrated in vacuo. The yellow solid obtained was triturated in a PE/Et₂O (8-2) mixture and filtered. The residue was taken up in a solution of 1M hydrazine in THF (~250 ml) and stirred in a sealed tube at 80° C. overnight. A solid had precipitated and was filtered off (filtrate 1). The solid was triturated in methanol and filtered off (solid 1). The filtrate 1 was concentrated, triturated in methanol and filtered off to give solid 2. All remaining filtrates were
concentrated and a solid was triturated in MeOH and filtered off (solid 3). The solids were combined and dried in vacuo to afford 23 g of product. (off white powder; yield: 63%) 1H NMR (DMSO-d6) 7.36-7.39 (1H, m), 7.65-7.67 (1H, d), 7.87-8.91 (1H, t), 8.19-8.24 (1H, m), 8.61-8.63 (1H, m), 8.76-8.79 (1H, d). MS (ES+) 276 [MH+]. (S)-3-(6-(3-isobutylpiperazin-1-yl)pyridin-2-yl)-1H-pyrazolo[3,4-b]pyridine 60 In an 80 ml MW vial, a mixture of the azaindazole derivative (3 g; 10.9 mmol; 1 eq.), bis-TFA isobutyl piperazine (4.8 g, 13 mmol, 1.2 eq.) and potassium carbonate (5.3 g, 38 mmol, 3.5 eq.) in NMP (20 ml) were stirred at room temperature for 15 min. The reaction mixture was stirred in a microwave at 175° C. for 70 min. The reaction mixture was diluted 162 with ethyl acetate (200 ml), washed with a saturated sodium bicarbonate aqueous solution (100 ml) and brine (100 ml). The organic layer was dried over magnesium sulfate and concentrated in vacuo. The residue was purified by flash chromatography (Companion; 120 g DCM/MeOH+NH3 100-0-0 to 90-10-1) to afford the title compound as an off white solid (2 g; 54%). ¹H NMR (400.0 MHz, DMSO) d 0.95 (dd, J=6.5, 16.2 Hz, 6H), 1.46-1.61 (m, 2H), 1.88 (dd, J=6.8, 14.1 Hz, 1H), 3.03 (dd, J=10.7, 13.9 Hz, 1H), 3.21-3.28 (m, 2H), 3.44 (d, J=11.4 Hz, 3H), 4.43 (d, J=11.7 Hz, 1H), 4.57 (s, 1H), 7.00 (d, J=8.5 Hz, 1H), 7.29 (dd, J=4.5, 8.0 Hz, 1H), 7.57 (d, J=7.4 Hz, 1H), 7.76 (t, J=8.0 Hz, 1H), 8.59 (dd, J=1.5, 4.5 Hz, 1H), 8.75-8.82 (m, 2H), 8.96 (s, 1H) and 13.90 (s, 1H) ppm. MS (ES+) 337. #### Example 2 (S)-3-(6-(3-isobutylpiperazin-1-yl)pyrazin-2-yl)-1H-pyrazolo[3,4-b]pyridine (Compound No. 39) 20 2,6-diiodopyrazine To a mixture of 2,6-dichloropyrazine (12.5 g, 83.91 mmol), 4-methylbenzenesulfonic acid hydrate (32 g, 168.2 mmol), NaI (120 g, 800.6 mmol) and 1,4,7,10,13-pentaoxacyclopentadecane (10 mL, 50.35 mmol) was added thiolane 1,1-dioxide (200 mL) and the mixture heated to 150° C. and stirred for 30 3 hrs. The mixture was allowed to cool and added water 150 ml and neutralized with solid NaHCO₃. It was then extracted into ether (3×300 ml), washed with Sat. NaHCO₃, brine then dried (MgSO₄) and concentrated to give an orange solid. The product was washed with water and dried under high vacuum $\,^{35}$ to give 2,6-diiodopyrazine as an orange solid (8.6 g, 31%). ES+ 332. 1HNMR (CDCl₃) 8.73 (2H, s). (S)-tert-butyl 4-(6-iodopyrazin-2-yl)-2-isobutylpiperazine-1-carboxylate A mixture of 2,6-diiodopyrazine (1 g, 3.013 mmol), tertbutyl (2S)-2-isobutylpiperazine-1-carboxylate (949.3 mg, 3.917 mmol) and K₂CO₃ (624.7 mg, 4.520 mmol) in DMF (5 mL) was heated to 90° C. and stirred for 17 hrs. It was then 60 allowed to cool and diluted with ethyl acetate and water, further washed organic layer with water and brine, dried (MgSO₄) and concentrated to give an orange oil. It was then columned on silica gel eluting with 1:1 EtOAc/hexanes to give (S)-tert-butyl 4-(6-iodopyrazin-2-yl)-2-isobutylpipera- 65 zine-1-carboxylate as a yellow oil 1.05 g, 78%). ES+ 447. 1HNMR (CDCl₃) 0.98 (6H, d), 1.23-1.45 (2H, m), 1.55-1.63 164 (1H, m), 2.91-3.00 (1H, m), 3.03-3.21 (2H, m), 3.98-4.20 (3H, m), 4.25 (1H, brs), 7.95 (1H, s), 8.06 (1H, s). (S)-tert-butyl 4-(6-(2-fluoronicotinoyl)pyrazin-2-yl)-2-isobutylpiperazine-1-carboxylate A solution of (S)-tert-butyl 4-(6-iodopyrazin-2-yl)-2isobutylpiperazine-1-carboxylate (1.05 g, 2.353 mmol) in THF (15 mL) was cooled to -78° C. and nBuli 2.5M in hexanes (988.4 µL of 2.5 M, 2.471 mmol) was added slowly. The solution was stirred for 10 mins after which a solution of 2-fluoro-N-methoxy-N-methyl-pyridine-3-carboxamide (455.1 mg, 2.471 mmol) in THF (5 mL) was added and the solution stirred for 1 hr at -78° C. The reaction was quenched with Sat NH₄Cl and extracted into EtOAc (3×30 ml). The combined organic extracts were washed with brine, dried (MgSO₄) and concentrated to give an orange oil. Columned on silica gel eluting with 1:1 EtOAc/hexanes to give (S)-tertbutyl 4-(6-(2-fluoronicotinoyl)pyrazin-2-yl)-2-isobutylpiperazine-1-carboxylate as a yellow oil (0.64 g, 61%). ES+ 444. 1HNMR (CDCl₃) 0.91 (6H, dd), 1.39-1.50 (3H, m), 2.93-3.21 (3H, m), 4.01-4.10 (2H, m), 4.22-4.36 (2H, m), 7.43 (1H, dd), 8.08-8.12 (1H, m), 8.28 (1H, s), 8.39 (1H, d), 8.58 (1H, s). (S)-3-(6-(3-isobutylpiperazin-1-yl)pyrazin-2-yl)-1Hpyrazolo[3,4-b]pyridine To a solution of (S)-tert-butyl 4-(6-(2-fluoronicotinoyl) pyrazin-2-yl)-2-isobutylpiperazine-1-carboxylate (160 mg, 0.3608 mmol) in THF (3 mL) was added hydrazine (1M in THF) (360.8 µL of 1 M, 0.3608 mmol) and the solution heated to 75° C. for 2 hrs. The reaction was allowed to cool and concentrated to give a yellow solid. This was columned on silica gel eluting with 1:1 EtOAc/hexanes to give (S)-3-(6-(3-isobutylpiperazin-1-yl)pyrazin-2-yl)-1H-pyrazolo[3,4-b] pyridine as a pale yellow solid. The Boc intermediate was dissolved in DCM (6 mL) and TFA (3 mL, 38.94 mmol) was added and the solution stirred at rt for 1 hr. Reaction was concentrated and partitioned between EtOAc and Sat. Na $_2$ CO $_3$ and the organic washed with brine, dried (MgSO4) 5 and concentrated to give a yellow solid. It was columned on silica gel eluting with 10% MeOH in DCM (1% NH4OH) to give (S)-3-(6-(3-isobutylpiperazin-1-yl)pyrazin-2-yl)-1H-pyrazolo[3,4-b]pyridine as an off white solid (52 mg, 42% 2 steps). ES+ 338. 1 HNMR (DMSO) 0.92-0.94 (6H, dd), 1.24-10 1.35 (2H, m), 1.79-1.88 (1H, m), 2.56-2.61 (1H, m), 2.67-2.80 (2H, m), 2.92-3.05 (2H, m), 4.25 (1H, d), 4.33 (1H, d), 7.32 (1H, dd), 8.30 (1H, s), 8.57-8.61 (2H, m), 8.73 (1H, d), 14.14 (1H, brs). ### Example 3 4-(6-(1H-pyrazolo[3,4-b]pyridin-3-yl)pyridin-2-yl) piperidin-4-ol (Compound 60) 166 3-(6-bromo-2-pyridyl)-1-trityl-pyrazolo[5,4-b]pyridine (120 mg, 0.2319 mmol) was added to a stirred solution of BuLi (104.4 μL of 2.5 M in hexane, 0.2609 mmol) in THF (2.5 mL), under nitrogen at –78° C., and the resulting mixture stirred at the same temperature for 2 hours. This was followed by the dropwise addition of tert-butyl 4-oxopiperidine-1-carboxylate (47.12 mg, 0.2365 mmol) in THF (0.5 mL) and the reaction stirred for a further 2 hours at –78° C. The reaction was then quenched with saturated NH₄Cl, and the reaction extracted with EtOAc. The combined organics were dried over MgSO₄, filtered and concentrated. The crude reaction was taken up in 6 mL DCM and cooled to 0° C. Triethylsilane (0.12 mL) and TFA (1 mL) was added and the reaction stirred at 0° C. for 3 hours. Solvent was removed in vacuo, and the resulting yellow solid purified by HPLC to yield a colourless solid in an overall yield of 21%. ES+ 296.02. ¹H NMR (400.0 MHz, MeOH) 1.79 (d, J=12.3 Hz, 2H), 2.49 (td, J=13.3, 5.9 Hz, 2H), 3.07 (d, J=11.3 Hz, 2H), 3.29-3.20 (m, 2H), 7.41-7.35 (m, 1H), 7.71-7.69 (m, 1H), 7.96-7.90 (m, 1H), 8.13-8.11 (m, 1H), 8.58 (dd, J=1.5, 4.6 Hz, 1H), 9.17 (dd, J=1.5, 8.1 Hz, 1H). #### Example 4 (S)-3-(6-(3-isobutylpiperazin-1-yl)-3-(trifluoromethyl)pyridin-2-yl)-1H-pyrazolo[3,4-b]pyridine (Compound 4) $$\begin{array}{c|c} I & & & & \\ \hline & N & & \\ \hline & \\ \hline & & & \\ \hline &$$ 40 45 Hydrazine, THF 100 degrees, microwave To a solution of 6-chloro-2-iodo-3-(trifluoromethyl)pyridine (2.2 g, 7.156 mmol) in THF (20.51 mL), cooled to -78° C., was added isopropyl magnesium chloride 2M in THF (3.649 mL of 2 M, 7.299 mmol) and the solution stirred for 15 mins. A solution of 2-fluoro-N-methoxy-N-methyl-pyridine-3-carboxamide (1.450 g, 7.872 mmol) in THF (4.631 mL) was added (over approx 1 min) and the resultant brown solution stirred at -78° C. for 1 hr. Reaction was quenched at -78° C. by addition of saturated NH₄Cl and diluted with ethyl acetate. Organic layer was washed with brine, dried (MgSO₄) and concentrated to give a yellow oil. Purified by column chromatography eluting with a 0-30% EtOAc/Pet ether system. Relevant fractions collated and evaporated to dryness to give the required product as a yellow oil. Yield=1.13 g, 52%. ES+ 304.90, 1H NMR (400.0 MHz, CDCl₃) d 7.44 (m, 1H), 7.65 (m, 1H), 8.12 (m, 1H), 8.49 (m, 2H) ppm A solution of [6-chloro-3-(trifluoromethyl)-2-pyridyl]-(2-fluoro-3-pyridyl)methanone (224 mg, 0.7353 mmol) in THF (1.824 mL) was treated with hydrazine (1.0M in THF) (735.3 $\,^{60}$ µL of 1 M, 0.7353 mmol), a bright yellow color resulted which changed to a deep orange (no real temperature rise observed). The reaction was allowed to heat at 100 degrees for 3 hours and then concentrated in vacuo to give a yellow solid. Yield=207 mg, 90%. ES+ 299.90, 1H NMR (400.0 MHz, 65 CDCl₃) d 7.36 (m, 1H), 7.82 (m, 1H), 8.31 (m, 1H), 8.52 (m, 1H), 8.64 (m, 1H) ppm. 168 A mixture of 3-(6-chloro-3-(trifluoromethyl)pyridin-2yl)-1H-pyrazolo[3,4-b]pyridine (50 mg, 0.1674 mmol), K₂CO₃ (46.27 mg, 0.3348 mmol) and N—BOC isobutyl piperazine (81.14 mg, 0.3348 mmol) in DMF (1.786 mL) were heated at 90° C. for 100 mins in the microwave. The reaction was worked up by diluting with EtOAc, washing with bicarb and brine. This was dried over MgSO4, filtered and evaporated to dryness to give an orange residue. The residue was taken up in TFA/DCM (1 ml/3 ml) and stirred at RT for 2 hours. Reaction mixture was concentrated and the resultant residue was purified by reverse phase preparative HPLC [Waters Sunfire C18, 10 uM, 100 A column, gradient 10%-95% B (solvent A: 0.05% TFA in water, solvent B: CH₃CN) over 16 minutes at 25 mL/min]. The fractions were collected, passed through a sodium bicarbonate cartridge and freeze-dried to give the title compound as a white solid (39 mg, 36% Yield). ES+ 405, ¹H NMR (400.0 MHz, DMSO) d 0.88 (dd, J=2.1, 6.5 Hz, 6H), 1.25 (m, 2H), 1.76 (m, 1H), 2.51 (m, 1H), 2.69 (m, 2H), 2.95 (m, 2H), 4.21 (m, 1H), 4.35 (m, 1H), 6.98 (m, 1H), 7.26 (m, 1H), 7.93 (d, J=9.1 Hz, 1H), 8.43 (m, 1H), 8.60 (m, 1H) and 13.94 (s, NH) ppm Example 5 (R)-3-(6-(3-phenylpiperazin-1-yl)-3-(trifluoromethyl)pyridin-2-yl)-1H-pyrazolo[3,4-b]pyridine (Compound 53) A 2.5M BuLi solution in hexane (30 ml, 75
mmol) was added dropwise over 20 minutes to a grey suspension of dibromopyridine (16.92 g, 71.43 mmol) in THF (300 ml), cooled to T<-90 $^{\circ}$ C. under nitrogen. The temperature was $_{50}$ maintained at -95° C.<T<-90° C. during the addition and then allowed to stir at T<90° C. for 30 minutes. A solution of the Weinreb derivative (13.81 g, 75 mmol) in THF (20 ml) was added dropwise over 15 minutes and the reaction mixture stirred at -90° C. for 1 hour. The mixture was quenched at 55 -90° C. with saturated NH₄Cl solution and diluted with diethyl ether, washed with saturated aqueous sodium bicarbonate and brine and dried over MgSO₄. The mixture was purified by flash chromatography (Companion; 330 g SiO2; Petroleum ether/EtOAc 0 to 50%). Relevant fractions were 60 combined and concentrated under reduced pressure to give the required product as a white solid. Yield=9 g, 45%. $ES+282.85,\,^{1}H\,NMR\,(400.0\,MHz,CDCl_{3})\,d\,7.35\,(m,1H),\,\,_{65}$ 7.71 (m, 1H), 7.80 (m, 1H), 8.05 (m, 1H), 8.21 (m, 1H) and 8.42 (m, 1H) ppm A mixture of (6-bromo-2-pyridyl)-(2-fluoro-3-pyridyl) methanone (10 g, 35.6 mmol) and 1M hydrazine in THF (39.14 ml, 39.14 mmol) was combined and stirred at 80° C. overnight in a sealed tube. A solid precipitated out and the mixture was allowed to cool and treated with a small amount of 'Propanol. The mixture was filtered to give the desired product as an off-white solid. Yield=7.0 g, 72%. ES+ 276.87, ¹H NMR (400.0 MHz, DMSO) d 7.36 (m, 1H), 7.67 (m, 1H), 7.90 (m, 1H), 8.20 (m, 1H), 8.61 (m, 1H) and 8.78 (m, 1H) ppm 3-(6-bromo-2-pyridyl)-1H-pyrazolo[5,4-b]pyridine (3.00 g, 10.90 mmol) was suspended in dry DMF (30.00 mL) and cooled in an ice-bath. Sodium hydride (479.6 mg, 11.99 mmol) was added in one portion and the resulting mixture changed to a yellow solution and was stirred at 0° C. for ~30 minutes. Trityl chloride (3.189 g, 11.44 mmol) was added in one portion and the resulting yellow suspension was stirred at RT for 60 minutes, by which time it was a bright yellow suspension. This material was concentrated under reduced pressure to remove DMF to give a purple solid and then partitioned between DCM and saturated NH₄Cl. The organic layer was washed with brine, dried over MgSO4, filtered and partially concentrated under reduced pressure to give a pale yellow solid. The solid was purified by column chromatography (0-20% MeOH in DCM) to give a white solid. Yield=4.44 g, 79%. ES+ 518, 1H NMR (400.0 MHz, DMSO) d 7.22-7.30 (m, 17H), 7.66 (m, 1H), 7.85 (m, 1H), 8.31 (m, 1H) and 8.76 (m, 1H) ppm A mixture of 3-(6-bromo-2-pyridyl)-1-trityl-pyrazolo[5,4b|pyridine (100 mg, 0.1933 mmol) and (2S)-2-phenylpiperazine (54.56 mg, 0.2320 mmol) in DME (2.500 mL) was treated with sodium t-butoxide (27.87 mg, 0.2900 mmol) followed by dicyclohexyl-[2-(o-tolyl)phenyl]phosphane (7.046 mg, 0.01933 mmol) and Palladium acetate (4.340 mg, 0.01933 mmol). The mixture was allowed to stir at 95 degrees in a sealed tube overnight. The mixture was allowed to cool, filtered through celite and concentrated to give a yellow oil. This was taken up in DCM (6 ml) and cooled to 0° C. Triethylsilane (0.12 mL) and TFA (1 mL) were added and the reaction stirred at 0° C. for 1 hour. The solvent was removed in vacuo and the residue purified by reverse phase preparative HPLC [Waters Sunfire C18, 10 uM, 100 A column, gradient 10%-95% B (solvent A: 0.05% TFA in water, solvent B: CH₃CN) over 16 minutes at 25 mL/min]. The fractions were collected, passed through a sodium bicarbonate cartridge and freeze-dried to give the title compound as a white solid (20 $ES+\,357,\,^{1}H\,NMR\,(400.0\,MHz,\,MeOH)\,d\,8.89\,(dd,\,J=1.6,\,8.1\,Hz,\,1H),\,8.53\,(dd,\,J=1.6,\,4.6\,Hz,\,1H),\,7.70-7.66\,(m,\,1H),\,7.55\,(dd,\,J=4.7,\,7.3\,Hz,\,3H),\,7.46-7.42\,(m,\,2H),\,7.38-7.34\,(m,\,1H),\,7.20\,(dd,\,J=4.6,\,8.1\,Hz,\,1H),\,6.87\,(d,\,J=8.4\,Hz,\,1H),\,4.56\,(s,\,1H),\,4.55\,(dd,\,J=1.3,\,12.7\,Hz,\,1H),\,4.42-4.39\,(m,\,1H),\,3.98\,(dd,\,J=3.0,\,10.7\,Hz,\,1H),\,3.29-3.25\,(m,\,1H)\,and\,3.20-2.97\,(m,\,3H)\,ppm$ ### Example 6 3-(3-fluoro-6-(4-methylpiperazin-1-yl)pyridin-2-yl)-1H-pyrazolo[3,4-b]pyridine (Compound 226) mg, 29% Yield). BuLi, a 2.5M solution in THF (10 ml, 25.0 mmol) was added dropwise to a suspension of DABCO (2.804 g, 25.0 mmol) in MTBE (40 ml) which was cooled to -78° C. The reaction mixture was stirred at that temperature for ~30 minutes and then treated dropwise with a solution of 2,5-difluoropyridine (2.616 g. 22.73 mmol) in MTBE (5 ml). The mixture was stirred at that temperature for 1 hour and then treated with 2-fluoro-N-methoxy-N-methyl-pyridine-3-carboxamide (5.022 g, 27.27 mmol) in THF (4 ml) and allowed to stir for 1 hour. The reaction was quenched with saturated aqueous sodium bicarbonate and diluted with EtOAc. The organics were washed with brine and dried over MgSO4. After concentration to dryness, the residue was purified by column chromatography (ISCO Companion system; 80 g $_{15}$ SiO2; Petroleum ether/EtOAc 0 to 30%). Relevant fractions were collated and evaporated to dryness to give the product as a white solid. Yield=2.9 g, 54%. ES+ 239.88, 1H NMR (400.0 MHz, DMSO) d 7.20 (m, 1H), 7.42 (m, 1H), 7.76 (m, 1H), 8.24 (m, 1H) and 8.47 (m, $_{\rm 20}$ 1H) ppm A solution of hydrazine (1M in THF) (13.0 ml, 13.0 mmol) was added to a solution of the (3,6-difluoro-2-pyridyl-(2-fluoro-3-pyridyl)methanone (2.9 g, 12.18 mmol) in THF cooled to 0° C. The mixture was allowed to stir at 0° C. for 30 minutes and then left to warm up to RT. The reaction was diluted with EtOAc and washed with bicarb and brine. After drying over MgSO4, it was concentrated in vacuo and triturated with DCM to give a solid which was filtered off. Yield=0.68, 24%. ES+ 233.04, 1H NMR (400.0 MHz, DMSO) d 7.30 (m, 1H), 7.37 (m, 1H), 8.11 (m, 1H), 8.62 (m, 1H), 8.73 (m, 1H) and 14.22 (m, 1H) ppm A mixture of 3-(3,6-difluoropyridin-2-yl)-1H-pyrazolo[3, 4-b]pyridine (100 mg, 0.430 mmol) and 1-methylpiperazine (100 uL, 0.901 mmol) and DIPEA (75 uL, 0.434 mmol) in NMP (1 ml) was allowed to stir at 140° C. overnight. The reaction mixture was purified by reverse phase preparative HPLC [Waters Sunfire C18, 10 uM, 100 A column, gradient 10%-95% B (solvent A: 0.05% TFA in water, solvent B: CH₃CN) over 16 minutes at 25 mL/min]. The fractions were collected, passed through a sodium bicarbonate cartridge and freeze-dried to give the title compound as a white solid (35 mg, 15% Yield). ES+ 313.01 ### Example 7 3-(4-(piperazin-1-yl)pyrimidin-2-yl)-1H-pyrazolo[3, 4-b]pyridine (Compound 81) -continued ⁱPropylmagnesium chloride, 2M in THF (3.0 ml, 6.0 mmol) was added dropwise to a suspension of 2-iodo-4methylsufanyl-pyrimidine (1.5 g, 5.95 mmol) in THF (30 ml), cooled to $^-5^{\circ}$ C. under Nitrogen. After 1 hour, a solution of 2-fluoro-N-methoxy-N-methyl-pyridine-3-carboxamide (1.206 g, 6.54 mmol) in THF (3 ml) was added dropwise to the red-brown suspension. The mixture was allowed to stir at ⁻⁵° C. for 2 hours. The reaction was quenched with saturated aqueous NH₄Cl, diluted with EtOAc and washed with saturated aqueous sodium bicarbonate and brine. After drying over MgSO₄, the mixture was concentrated and purified by column chromatography (ISCO Companion system; 12 g SiO₂; Petroleum ether/EtOAc). Relevant fractions were combined and concentrated under reduced pressure to give the product as a colourless oil that crystallized on standing. Yield=0.24 g, 16%. ES+ 250.88, 1H NMR (400.0 MHz, CDCl $_3$) d 2.52 (3H, s), 7.33 (m, 1H), 7.43 (m, 1H), 8.30 (m, 1H), 8.45 (m, 1H) and 8.53 (m, 1H) ppm A mixture of (2-fluoro-3-pyridyl)-(4-methylsulfanylpyrimidin-2-yl)methanone (0.24 g, 0.96 mmol) and hydrazine (1M in THF)(3.0 ml, 3.0 mmol) were combined and stirred at 80° C. for 2 hours. The mixture was concentrated, diluted with EtOAc and washed with saturated aqueous sodium bicarbonate and brine. Drying over MgSO $_{\rm 4}$ and concentration gave the product as a white solid. Yield=0.21 g, 90% ES+ 244.92, 1H NMR (400.0 MHz, DMSO) d 2.69 (3H, s), 7.35 (m, 1H), 7.42 (m, 1H), 8.60 (m, 2H), 8.84 (m, 1H) and 14.19 (m, 1H) ppm mCPBA (0.156 g, 0.90 mmol) was added in one portion to a suspension of 3-(4-methylsulfanylpyrimidin-2-yl)-1H- 65 pyrazolo[5,4-b]pyridine (0.21 g, 0.86 mmol) in DCM (5 ml) cooled to 0° C. under Nitrogen. The mixture was allowed to stir t this temperature for 2 hours and then quenched with saturated aqueous sodium bicarbonate. The mixture was diluted with DCM and the resultant off-white solid was filtered off. Yield=0.13~g, 58%. 176 ES+ 260.93, ¹H NMR (400.0 MHz, DMSO) d 2.99 (3H, s), 7.38 (m, 1H), 7.95 (m, 1H), 8.63 (m, 1H), 8.83 (m, 1H), 9.24 (m, 1H) and 14.41 (m, 1H) ppm A mixture of 3-(4-methylsulfinylpyrimidin-2-yl)-1Hpyrazolo[5,4-b]pyridine (45 mg, 0.17 mmol), tert-butyl piperazine-1-carboxylate (100 mg, 0.53 mmol) and potassium carbonate (100 mg, 0.72 mmol) in NMP (0.5 ml) were stirred at 125° C. for 60 minutes in the microwave. The reaction ₄₀ mixture was diluted with EtOAc and washed with saturated aqueous sodium bicarbonate and brine. After drying over MgSO₄ and concentration the residue was taken up in DCM (2 ml) and treated with TFA (1 ml). The reaction was allowed to stir at RT for 3 hours and concentrated in vacuo. and the 45 resultant residue was purified by reverse phase preparative HPLC [Waters Sunfire C18, 10 uM, 100 A column, gradient 10%-95% B (solvent A: 0.05% TFA in water, solvent B: CH₃CN) over 16 minutes at 25 mL/min]. The fractions were collected, passed through a sodium bicarbonate cartridge and freeze-dried to give the title compound as a pink solid (10 mg, 11% Yield). ES+ 282, ¹H NMR (MeOD): 3.31-3.38 (4H, m), 4.17 (4H, m), 7.01-7.03 (1H, d), 7.33-7.36 (1H, dd), 8.25-8.27 (1H, d), 8.56-8.57 (1H, d), 8.71-8.73 (1H, d) Example 8 60 15 20 $\hbox{$4$-(tert-butyldimethylsilyl)-2,3,5-trifluor opyridine}$ n-BuLi (41.09 mL of 1.6 M, 65.75 mmol) was added dropwise to a solution of diisopropylamine (6.919 g, 9.583 mL, 68.38
mmol) in THF (130 mL), cooled to -5° C. (under N2). After stirring for 15 min, the reaction mixture was cooled down to -78° C. 2,3,5-Trifluoropyridine (7 g, 52.60 mmol) was added dropwise to the reaction mixture which was stirred for 45 min. A solution of tert-butyl-chloro-dimethyl-silane (10.31 g, 68.38 mmol) in THF (15 mL) was added to the $_{55}$ reaction mixture. The reaction mixture was stirred at -78° C. for 2 hours. It was quenched with a saturated ammonium chloride aqueous solution (~50 ml). The reaction mixture was partitioned between ethyl acetate and a saturated sodium bicarbonate aqueous solution. The aqueous was extracted 60 with ethyl acetate twice. The combined organics were washed with brine. The organic was dried over magnesium sulfate and concentrated in vacuo after filtration. The crude mixture was purified on silica gel, eluting with petrol ether/ethyl acetate 0 to 20% to afford the title compound as a pale yellow solid 65 (11.8 g, 90%). ¹H NMR (CDCl₃) 0.34 (6H, s), 0.87 (9H, s), 7.71 (1H, s). $$F \longrightarrow F$$ $$HN \longrightarrow F$$ $$Si \longrightarrow F$$ $$N \longrightarrow F$$ $$Si \longrightarrow F$$ 3-(4-(tert-butylmethylsilyl)-3,5,6-trifluoropyridin-2-yl)-1H-pyrazolo[3,4,b]pyridine n-BuLi (1.6M in hexane) (13.90 mL of 1.6 M, 22.24 mmol) was added to a solution of disopropylamine (2.353 g, 3.259 mL, 23.25 mmol) in THF (50.00 mL) cooled to -5/-10° C. under N2. Fifteen minutes later, the solution was cooled to -78° C. A solution of tert-butyl-dimethyl-(2,3,5-trifluoro-4pyridyl)silane (5 g, 20.22 mmol) in THF (10.00 mL) was added to the reaction mixture which was stirred for 45-50 min. 2-Fluoro-N-methoxy-N-methylnicotinamide (4.282 g, 23.25 mmol) was added to the reaction mixture which was stirred at -78° C. for a further 2 hours. The reaction mixture was quenched with a saturated ammonium chloride aqueous solution. It was diluted with ethyl acetate. The organic was washed with brine. It was dried over magnesium sulfate and concentrated in vacuo after filtration. The crude mixture was taken up in a 1M hydrazine solution in THF (80 mL of 1 M, 80.00 mmol) and stirred at room temperature for 18 hours. The brown solution was concentrated under reduced pressure. The residue was triturated with DCM. A brown solid was filtered off. The filtrate was partially concentrated and purified on silica gel eluting with petrol ether/ethyl acetate to afford the title compound as a beige solid (1.8 g, 30%). ¹H NMR (CDCl₃) 0.54 (6H, s), 1.03 (9H, s), 7.32-7.35 (1H, d), 8.70-8.71 (1H, d), 8.89-8.91 (1H, d), 12.1 (1H, s). 1-((2S)-4-(3,5-difluoro-6-(1H-pyrazolo[3,4,b]pyridin-3-yl)pyridin-2-yl)piperazin-2-yl)cyclopropanol A 10 ml microwave vial was charged with tert-butyl-dimethyl-[2,3,5-trifluoro-6-(1H-pyrazolo[3,4-b]pyridin-3-yl)-4-pyridyl]silane (169.4 mg, 0.4649 mmol), 1-[(2S)-piperazin-2-yl]cyclopropanol dihydrochloride (100 mg, 0.4649 mmol), N-methylpyrrolidone (1 mL) and diisopropylethylamine (60.09 mg, 80.98 μ L, 0.4649 mmol). The reaction mixture was stirred at 175° C. for 3 hours in the CEM microwave. The crude mixture was purified by Fractionlynx HPLC. The aqueous fractions were combined and lyophilised to give the title compound as a brown bis TFA salt (4 mg, 1.5%). 1 H NMR (CD3OD) 0.60-0.90 (4H, m), 1.1-1.30 (2H, m), 2.55-2.60 15 (1H, m), 3.00-3.3.30 (2H, m), 3.85-3.90 (1H, m), 4.05-4.10 (1H, m), 7.21-7.24 91H, d), 7.48-7.53 (1H, dd), 8.47-8.48 (1H, d), 8.69-8.71 (1H, d). #### Intermediate 1 (S)-1,4-bis(tert-butoxycarbonyl)piperazine-2-carboxylic acid To a solution of (S)-piperazine-2-carboxylic acid dihydrochloride (12 g; 59 mmol) and sodium carbonate (47 g; 446 mmol) in a water/tetrahydrofuran mixture (400 ml/200 ml), stirred at room temperature under N2, was added Boc anhydride (49 g, 224 mmol). The reaction mixture was stirred at room temperature for 18 hours. The suspension was extracted twice with diethyl ether (150 ml). The aqueous was acidified to pH 1 using concentrated HCl. Extractions with ethyl acetate (3*150 ml) were carried out. The ethyl acetate organics were combined and backwashed with brine (150 ml). The organic was dried over magnesium sulfate, filtered and concentrated in vacuo to afford the title compound as a white solid (18.3 g; 76%). ¹H NMR (CDCl₃) 1.45-1.49 (18H, d), 65 2.80-2.90 (1H, m), 3.10-3.40 (2H, m), 3.75-4.10 (2H, m), 4.60-4.70 (2H, m), 8.2-8.7 (1H, br s). (S)-1,4-di-tert-butyl 2-methyl piperazine-1,2,4-tricarboxylate To a suspension of solution of (S)-1,4-bis(tert-butoxycarbonyl)piperazine-2-carboxylic acid (18.3 g, 45 mmol) and potassium carbonate (8.2 g; 59 mmol) in DMF (150 ml) cooled to 0° C. under N2, was added dropwise a solution of iodomethane (7.36 ml; 118 mmol). The reaction mixture was left to stir at room temperature for 18 h. It was diluted with ethyl acetate, washed with water and brine. The organic was dried over magnesium sulfate, filtered and concentrated under reduced pressure to afford the title compound as a white solid (18 g; 95%). ¹H NMR (CDCl₃) 1.46-1.50 (18H, d), 1.65 (3H, s), 2.80-2.90 (1H, m), 3.10-3.40 (2H, m), 3.75-4.10 (2H, m), 4.60-4.70 (2H, m). (S)-1,4-di-tert-butyl 2-(1-hydroxycyclopropyl)piperazine-1,4-dicarboxylate To a solution of (S)-1.4-di-tert-butyl 2-methyl piperazine-1,2,4-tricarboxylate (3 g; 8.7 mmol) and titanium tetraisopropoxide (0.77 ml; 2.6 mmol), cooled to 0° C. under N2, a 3M solution of ethyl magnesium bromide in THF (8.7 ml; 26 mmol) was added dropwise over 45 minutes. The reaction mixture was left to warm up to room temperature and stirred for 18 hours. The reaction mixture was quenched with a 1M hydrochloric acid aqueous solution. The reaction mixture was diluted with water. Extractions were carried out with ethyl acetate. The combined organics were backwashed with a saturated sodium bicarbonate aqueous solution and brine. The organic was dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue was purified on silica gel (40 g), eluting with petrol/ethyl acetate (0 to 40%). The product was obtained as colourless oil (1.4 g; 50%). ¹H NMR (CDCl₃) 1.37-1.41 (18H, m), 1.52 (4H, s), 2.80-2.90 (1H, m), 3.10-3.40 (2H, m), 3.50-3.70 (2H, m), 3.80-4.20 (2H, m). 35 50 A solution of (S)-1,4-di-tert-butyl 2-(1-hydroxycyclopropyl)piperazine-1,4-dicarboxylate (110 mg; 0.32 mmol) in a 3M hydrochloric acid methanolic solution (3 ml; 9 mmol) was stirred at room temperature for 24 hours. The solution was concentrated in vacuo to afford the title compound as a bis HCl salt (90 mg; quantitative). ¹H NMR (CDCl₃)-1.48-1.52 (4H, s), 2.95-3.00 (1H, m), 3.20-3.30 (1H, m), 3.50-3.60 (1H, m), 3.80-3.85 (1H, m), 3.90-3.95 (2H, m), 4.20-4.30 (1H, m). #### Intermediate 2 ### 3-Methyl-1-(pyrazin-2-yl)butan-1-ol To a solution of 2-iodopyrazine (10.0 g, 48.5 mmol) in diethyl ether at -50° C. was added dropwise n-BuLi (2.5 M in hexanes, 25 mL, 60.7 mmol), immediately followed by addition of isovaleraldehyde (8.13 mL, 6.48 g, 75 mmol) over 5 minutes. The mixture was allowed to reach room temperature and was added to a saturated NH₄Cl solution. The aqueous phase was extracted with TBME (3×100 mL) and the combined organic extracts were washed with brine, dried over MgSO₄ and concentrated in vacuo. The resulting oil was filtered over a plug of silica to afford 3-methyl-1-(pyrazin-2-yl)butan-1-ol as a yellow-brownish oil (5.5 g; 68%). 182 $$\bigcap_{N} \bigcap_{OH} \bigcap_{N} \bigcap_{O}$$ 3-Methyl-1-(pyrazin-2-yl)butan-1-one A solution of oxalylchloride (2.65 mL, 3.92 g, 30.9 mmol) in dichloromethane (50 mL) was cooled to −60° C. and DMSO (4.4 mL, 4.82 g, 4.4 mL) was added while maintaining the temperature between −50 and −60° C. A solution of 3-methyl-1-(pyrazin-2-yl)butan-1-ol (4.66 g, 28.0 mmol) in dichloromethane (10 mL) was added and the mixture was stirred for 15 min at −60° C. Triethylamine (19.45 mL, 14.17 g, 140 mmol) was added (T≈−55° C.) and the mixture was allowed to reach room temperature. Water was added and the aqueous phase was extracted with dichloromethane. The combined organic layers were dried over MgSO₄ and concentrated in vacuo. Column chromatography (silica, EtOAc/Heptane 1/9) afforded 3-methyl-1-(pyrazin-2-yl)butan-1-one as a dark yellow oil (4.3 g; 94%). ### 2,2-Dimethyl-1-(pyrazin-2-yl)cyclopropanol A solution of 3-methyl-1-(pyrazin-2-yl)butan-1-one (1.0 g, 6.1 mmol) in 120 mL of a 19/1 mixture of tert-butanol and benzene was irradiated using a 6 W 366 nm lamp (TLC lamp) in a pyrex glass tube. The conversion was 50% after 16 h and 80% after 40 h. At this point the volatiles were removed in vacuo and the material was purified by column chromatography (silica, EtOAc/heptanes 1/4) to afford 2,2-dimethyl-1-(pyrazin-2-yl)cyclopropanol as a reddish-brown oil (375 mg; 38%). ¹H NMR (CDCl₃) 0.90 (3H, s), 1.00 (2H, d), 1.40 (2H, s), 3.20 (1H, s), 8.42 (1H, m), 8.50 (1H, m), 8.76 (1H, m). $$\bigcap_{N} OH \longrightarrow \bigcap_{H} OH$$ ### 2,2-Dimethyl-1-(pyperazin-2-yl)cyclopropanol A suspension of 2,2-dimethyl-1-(pyrazin-2-yl)cyclopropanol (1 g, 6 mmol) and platinum oxide (150 mg; 0.66 mmol) in methanol (15 ml) was shaken under a 60 psi H2 pressure using a PARR hydrogenator for 24 hours. The suspension was filtered over a celite pad and the filtrate was concentrated under reduced pressure to afford the title compound as a beige oil (1 g, 95%). $^{1}\mathrm{H}$ NMR (CD_3OD) 0.90 (2H, s), 1.20-1.25 (6H, m), 2.45-2.50 (1H, m), 2.60-3.00 (5H, m), 3.30-3.40 (1H, m). ### Intermediate 3 ## 3-methyl-2-(pyrazin-2-yl)butan-2-ol 2-iodopyrazine (10 g, 48.55 mmol) in dry diethyl ether (100 ml) was cooled to -78° C. n-BuLi (2.5M in hexanes) (20.39 ml of 2.5 M, 50.98 mmol) was added dropwise over 10 40 minutes. A brown heterogeneous mixture was produced and it was stirred at -78° C. for 10 minutes, then warmed to -50° C. and stirred for an additional 60 minutes. The mixture was then re-cooled to -78° C. and 3-methylbutan-2-one (5.227 g, 6.493 ml, 60.69 mmol) was added.
The mixture was stirred 45 for 10 minutes. Further diethyl ether (10 ml) was added. The mixture was then allowed to warm to ambient. A saturated ammonium chloride aqueous solution (40 ml) and ethyl acetate (100 ml) were added and the mixture stirred for 5 minutes. The organic layer was separated and the aqueous 50 extracted with ethyl acetate. The combined extracts were dried over magnesium sulfate, filtered and concentrated. The crude was purified on silica-gel, eluting with 40% ethyl acetate/petrol to afford the title compound as a pale yellow oil (4.74 g, 60%). ¹H NMR (CDCl₃) 0.75 (3H, d), 0.99-1.01 (3H, 55 d), 1.58 (3H, s), 2.05-2.09 (1H, m), 4.10-4.40 (1H, m), 8.51-8.52 (2H, m), 8.73 (1H, s). A PARR vessel was charged with platinum dioxide (1 g, 4.404 mmol), methanol (70 mL) and 3-methyl-2-pyrazin-2-yl-butan-2-ol (5 g, 30.08 mmol). The vessel was shaken in the PARR under a 60 psi H2 pressure for 24 hours. As the reaction did not go to completion, more platinum dioxide (~300 mg) was added and the reaction mixture was shaken in the PARR for another 24 hours. The catalyst was filtered off and the filtrate was concentrated in vacuo to give the title compound as a colourless oil (5 g; 97%). ¹H NMR (CDCl₃) 0.85-0.90 (3H, m), 0.97-1.06 (6H, m), 1.70-1.90 (3H, m), 2.60-2.70 (3H, m), 2.80-2.90 (2H, m), 3.05-3.10 (2H, m). ### Example 9 ### Compound 445 (R)-(+)-3-methyl-2-(pyrazin-2-yl)butan-2-ol A solution of 2,2,6,6-tetramethylpiperidine (282.2 g, 337.2 mL, 1.998 mol) in dry THF (1.400 L) was cooled to -35° C. under nitrogen. nBuLi (2.5M in hexanes) (799.2 mL of 2.5 M, 1.998 mol) was added over 30 minutes, keeping the internal temperature between -25 and -35° C. The mixture was allowed to warm to 0° (+/-1°) and stirred for 10 minutes. The mixture was then cooled to -78° C. and held at this temperature for 20 minutes. A solution of pyrazine (80 g, 998.9 mmol) in dry THF (200.0 mL) was then cannulated into the lithium amide mixture, keeping the internal temperature below -70° C. The deep red mixture was stirred for 20 minutes, then 3-methylbutan-2-one (430.1 g, 534.3 mL, 4.994 mol) (cooled in a -78° C. bath) was added as rapidly as possible, keeping the internal temperature below -60°. The mixture was then stirred at -78° C. (+/ -5° C.) for 2 hrs. Lc/Ms after this time showed no pyrazine remaining. The reaction was quenched at -78° C. by slow addition of 2M HCl (2 L). Ethyl acetate (800 mL) was then added. The mixture was allowed to warm to ambient and the organic phase separated. The mixture was very dark but the phases were easily separated. The aqueous phase was extracted with ethyl acetate (2×500 ml). The combined organics were washed with sat NaHCO3 (800 ml), then water (1 L) then brine (500 ml). The mixture was then concentrated. The residue was dissolved in petrol (1.2 L). Some solid was present. MgSO4 was added and the mixture dried, filtered and concentrated. The crude was a dark red oil (260 g). The crude was purified on silica gel, eluting with 0-50% ethyl acetate/petrol). The title compound was obtained as a pale yellow oil (103.2 g, 62%); ¹HNMR (CDCl₃) 0.74 (3H, d), 1.01 (3H, d), 2.07 (1H, m), 4.19 (1H, s), 8.52 (2H, s), 8.73 (1H, s); MS ES(+) 167.35 (M+1). The (R)-(+)-enantiomer was separated by chiral SFC chromatography using a cellulose-2 column (Phenomenex) (10% (2R)-3-methyl-2-(piperazin-2-yl)butan-2-ol Platinum oxide (4.673 g, 20.58 mmol) was placed in a Parr bottle. Methanol (140 mL) was added under an atmosphere of 15 nitrogen followed by (R)-(+)-3-methyl-2-(pyrazin-2-yl)butan-2-ol (17.1 g, 102.9 mmol). The reaction mixture was shaken in a PARR hydrogenator overnight with a hydrogen pressure of 60 psi. Lc/Ms after this time indicate that the reaction was complete. The suspension was filtered through a pad of celite under a nitrogen atmosphere, rinsing with methanol. The crude mixture was concentrated in vacuo. The residue was re-dissolved in dichloromethane, dried over MgSO4, filtered and concentrated in vacuo to afford the title compound as viscous light yellow oil (16.6 g, 93%); ¹H NMR (CDCl₃) 0.82-1.08 (9H, m), 1.81 (1H, m), 2.20-3.17 (10H, m); MS ES(+) 173.0 (M+1). 4-(tert-butyldimethylsilyl)-2,3,5-trifluoropyridine A solution of diisopropylamine (98.85 g, 136.9 mL, 976.9 mmol) in THF (1.350 L) was cooled to -65° C. n-BuLi (2.5 M in hexanes) (375.8 mL of 2.5 M, 939.4 mmol) was added dropwise via cannula over 1 h at such a rate as to maintain reaction temperature below -60° C. Once the addition was 45 complete the cooling bath was removed and the reaction mixture was allowed to warm up to 0° C. The reaction mixture was stirred for 15 min at 0° C., then re-cooled to -78° C. 2,3,5-trifluoropyridine (100 g, 751.5 mmol) was added dropwise via cannula over 20 min at such a rate to maintain the 50 reaction temperature below -69° C. The reaction mixture was stirred for 45 min at -78° C. during which time the solution turned orange brown. A solution of tert-butyl-chloro-dimethyl-silane (147.2 g, 976.9 mmol) in THF (150 mL) was then added via cannula over 30 min. The reaction mixture was 55 stirred at -78° C. for 90 minutes during which time the solution darkened. Lc/Ms after this time indicated that the reaction was complete. A saturated ammonium chloride solution (300 ml) was then added and mixture was allowed to warm up to RT. The reaction mixture was diluted with water 60 (100 ml) and extracted with EtOAc (1.5 L then 2×500 ml). The combined organics were washed with saturated NaHCO (500 ml) and brine (400 ml). The crude mixture was partially concentrated in vacuo, dried over magnesium sulfate, filtered and concentrated in vacuo to an oil. The crude was purified by 65 flash chromatography (CombiFlash Companion XL, 1.5 kg column, 0-20% ethyl acetate in petroleum ether). This 186 afforded the title compound as a colourless oil (136.2 g, 73%); 1 H NMR (CDCl $_{3}$) 0.34 (6H, s), 0.89 (9H, s), 7.73 (1H, s); MS ES(+) 248.25 (M+1). (4-(tert-butyldimethylsilyl)-3,5,6-trifluoropyridin-2-yl)(2-fluoropyridin-3-yl)methanone A solution of diisopropylamine (66.78 g, 92.49 mL, 659.9 mmol) in THF (1.360 L) was cooled to -20° C. under nitrogen. nBuLi (2.5M in hexane) (253.0 mL of 2.5 M, 632.4 mmol) was added dropwise via cannula at such a rate as to maintain the internal temperature below -15° C. The solution was warmed to 0° C. then immediately re-cooled to -90° C. Tert-butyl-dimethyl-(2,3,5-trifluoro-4-pyridyl)silane (136 g, 549.9 mmol) was added dropwise via cannula at such a rate as to maintain the internal temperature below -85° C. After complete addition the solution became an orange suspension. The reaction mixture was stirred at -85° C. for 1 h then 2-fluoro-N-methoxy-N-methylpyridine-3-carboxamide (116.5 g, 632.4 mmol) was added dropwise over 1 h keeping the internal temperature below -85° C. The mixture turned dark green then dark red during addition. The mixture was stirred at -85° C. for 45 min after which time Lc/Ms indicated the reaction was complete. The cooling bath was removed and the mixture warmed to -50° C. Saturated ammonium chloride solution NH4Cl (300 mL) was added and the mixture allowed to warm up to RT. The mixture was diluted with EtOAc (2.5 L). The aqueous phase was separated and extracted with more EtOAc (500 ml). The combined organics were washed with brine and partially concentrated in vacuo. The solution was dried over magnesium sulfate, filtered and concentrated in vacuo to a brown oil. The crude was purified on silica gel, eluting with 0-20% ethyl acetate in petroleum ether. This gave the title compound as a yellow oil which solidified on standing (159.6 g, 78%); ¹H NMR (CDCl₃) 0.35 (6H, s), 0.88 (9H, s), 7.29 (1H, m), 8.13 (1H, m), 8.37 (1H, m); 19F NMR $3\hbox{-}(4\hbox{-}(tert\hbox{-}butyldimethylsilyl)\hbox{-}3,5,6\hbox{-}trifluoropyridinal}2\hbox{-}yl)\hbox{-}1H\hbox{-}pyrazolo[3,4\hbox{-}b]pyridine}$ (decoupled) -112.47, -106.7, -89.3, -61.95; MS ES (+) 371.14 (M+1). 187 [4-[tert-butyl(dimethyl)silyl]-3,5,6-trifluoro-2-pyridyl]-(2-fluoro-3-pyridyl)methanone (159 g, 429.2 mmol) was dissolved in dioxane (1.6 L) and calcium carbonate (85.91 g. 858.4 mmol) was added. The reaction was in an ice bath and hydrazine hydrate (107.4 g, 104.4 mL, 2.146 mol) was added 5 dropwise over 30 minutes. The resultant mixture was stirred overnight, after which time the thick suspension became a heterogeneous red solution. The reaction mixture was filtered through a pad of Celite, washing copiously with EtOAc/ MeOH 7:1 (2×500 mL) and a small amount of water (100 10 mL). The filtrate was partitioned between EtOAc (1 L) and water (500 ml). The organic phase was washed with a sat aq NaHCO3 (500 mL). The combined aqueous layers were back-extracted with EtOAc (2×200 ml) and the combined organics were washed with brine (400 ml), dried over MgSO4 15 and filtered and concentrated to an orange solid. The solid was triturated with dichloromethane and filtered, washing with dichloromethane and petrol. This gave the title compound as an off-white solid. (103.8 g). The filtrate was concentrated under reduced pressure. The resulting solid was again tritu- 20 rated and filtered, washing with more petrol to give an offwhite solid (36.7 g). The title compound was obtained as an off-white solid (total weight 140.5 g, 90%); ¹H NMR (CDCl₃) 0.55 (6H, s), 1.02 (9H, s), 7.21 (1H, m), 8.69 (1H, m), 8.91 (1H, s), 11.69 (1H, brs); MS ES (+) 365.18 (M+1). 25 3-(4-(tert-butyldimethylsilyl)-3,5-difluoro-6-((S)-3-((R)-3-methyl-2-(trimethylsilyloxy)butan-2-yl)piperazin-1-yl)pyridin-2-yl)-1H-pyrazolo[3,4-b]pyridine A 500 ml glass pressure vessel was charged with tert-butyldimethyl-[2,3,5-trifluoro-6-(1H-pyrazolo[3,4-b]pyridin-3yl)-4-pyridyl]silane (26.80 g, 73.53 mmol), (2R)-3-methyl-2-piperazin-2-yl-butan-2-ol (19 g, 110.3 mmol), THF (53 mL) and imidazol-1-yl-trimethyl-silane (51.57 g, 53.72 mL, 367.7 mmol). An identical experiment was run in parallel. The containers was sealed and the mixture was
heated and 55 stirred at 95° C. overnight. Lc/Ms after this time showed a mixture consisting of 73% of the desired (S,R)-diastereoisomer and 18% of the (R,R)-diastereoisomer. Both reaction mixtures were cooled, combined and diluted with EtOAc (500 ml). The solution was washed with saturated sodium 60 bicarbonate (2×200 ml). The combined aqueous layers are extracted 3 times with ethyl acetate (200 ml). The combined organics were washed with brine (200 ml), dried over MgSO4, filtered and concentrated in vacuo to give 163.874 g of viscous brown oil. The diastereoisomers were separated on 65 silica gel, eluting with 10-95% ethyl acetate in petroleum ether containing 2% triethylamine). This gave the required 188 (S,R)-diastereoisomer as an orange foam (60.1 g, 69%); $^1\mathrm{H}$ NMR (CDCl₃) 0.001 (9H, s), 0.32 (6H, s), 0.76-0.84 (9H, m), 1.11 (4H, m), 1.45 (4H, m), 1.72 (1H, m), 1.90 (1H, s), 2.61 (1H, m), 2.74 (2H, m), 2.97 (1H, m), 3.11 (1H, m), 3.64 (1H, m), 3.82 (1H, m), 3.96 (1H, m), 7.09 (1H, m), 8.48 (1H, m), 8.74 (1H, m), 11.31 (1H, brs); $^{19}\mathrm{F}$ NMR (decoupled) -113.45, -108.39; MS ES(+) 589.3 (M+1). The (R,R)-diastereoisomer was isolated as an orange foam (22%); $^{1}\mathrm{H}$ NMR (CDCl₃) 0.001 (9H, s), 0.33 (6H, s), 0.72-0.88 (10H, m), 1.07 (3H, m), 1.45 (5H, m), 1.86 (1H, m), 2.54 (1H, m), 2.74 (2H, m), 2.94 (1H, m), 3.07 (1H, m), 3.63 (1H, m), 3.73 (1H, m), 3.96 (1H, m), 7.04 (1H, m), 8.46 (1H, m), 8.69 (1H, m), 11.35 (1H, brs); $^{19}\mathrm{F}$ NMR (decoupled) -113.78, -108.4; MS ES(+) 589.3 (M+1). (R)-2-4S)-4-(3,5-difluoro-6-(1H-pyrazolo[3,4-b] pyridin-3-yl)pyridin-2-yl)piperazin-2-yl)-3-meth-ylbutan-2-ol tert-butyl-[2-[(3S)-3-[(1R)-1,2-dimethyl-1-trimethylsily-35 loxy-propyl]piperazin-1-yl]-3,5-difluoro-6-(1H-pyrazolo[3, 4-b]pyridin-3-yl)-4-pyridyl]-dimethyl-silane (60 g, 101.9 mmol) was dissolved in THF (216.0 mL) at room temperature. TBAF in THF (214.0 mL of 1 M, 214.0 mmol) was added dropwise via cannula to the brown solution over 45 minutes. The reaction was stirred overnight, after which time the deprotection was complete by Lc/Ms. The mixture was diluted with EtOAc (600 ml) and washed with saturated aqueous NaHCO3 (100 ml then 2×200 ml). The organic phase was further washed with a 2:3 mixture of saturated brine:water (100 ml) until no remaining Bu4N+ salts were observed Lc/Ms analysis. The organic phase was dried over MgSO4, filtered and concentrated in vacuo to give a brown solid. The solid was triturated with diethyl ether, filtered and dried to give a orange brown solid (34.5 g, 84%). The solid was 50 recrystallised from isopropanol. This afforded the title compound as a beige solid (23 g); ¹H NMR (d6-DMSO) 0.84 (3H, d), 0.90 (3H, d), 1.06 (3H, s), 1.83 (2H, m), 2.74 (2H, d), 2.85 (2H, d), 3.09 (1H, d), 3.78 (1H, d), 4.04 (1H, d), 4.13 (1H, s), 7.30 (1H, dd), 7.92 (1H, dd), 8.60 (1H, dd), 8.77 (1H, dd), 13.99 (1H, brs); ¹⁹F NMR (decoupled) –128.5, –124.1; MS ES(+) 403.0 (M+1). A second crop was obtained from the filtrate (5.3 g) and had identical spectroscopic data. The following compounds can be synthesized, in general, based on a similar route to that outlined in Example 1 Compounds 7,9-28, 30-38, 40-43, 46-52, 55-56, 58, 70, 76, 78, 79, 86, 92, 93, 95, 105-107, 109-110, 123, 136, 139, 141, 147-149, 152-154, 160, 162, 164, 176-178, 181, 184, 186-187, 191, 193, 221, 225, 227-228, 230, 232-233, 235, and 335 The following compounds can be synthesized, in general, based on a similar route to that outlined in Example 2 Compounds 1-3, 6, 39, 234, 468, 470 and 471. The following compounds can be synthesized, in general, based on a similar route to that outlined in Example 3 Compounds 60, 73, 83, 99, 111, 146, 159, 431 and 440. The following compounds can be synthesized, in general, based on a similar route to that outlined in Example 4 Compounds 4-5, 8, 29, 44-45, 57, 65, 72, 75, 77, 80, 82, 84, 85, 87, 90, 91, 94, 97, 98, 100, 102-104, 108, 113-117, 119-122, 124-129, 134-135, 137-138, 140 150, 158, 164, 170-173, 194-195, 198, 202-203, 209-219, and 222-22, 236, 237, 257, 258, 259, 260, 261, 285, 319, 320, 321, 326, 332, 333, 336, 337, 340, 341, 348, 349, 350, 352, 353, 354, 356, 358, 359, 361, 363, 364, 365, 372, 384, 388, 396, 397, 398, 401, 402, 403, 404, 405, 406, 410, 411, 413, 415, 421, 423, 342, 343, 412, 413, 423, 424, 427, 428, 429, 430, 434, 435, 436, 446, 447, 450, 459, 460, 461, 462, 463, 464, 465, 466, and 469. The following compounds can be synthesized, in general, based on a similar route to that outlined in Example 5 Compounds 53-54, 59, 61-64, 67-69, 71, 74, 89, 96, 101, 118, 130, 143-145, 166, 168-169, 189, and 229. The following compounds can be synthesized, in general, based on a similar route to that outlined in Example 6 Compounds 88, 96, 112, 131, 142 151, 155, 161, 163, 167, 174-175, 179-180, 182-183, 185, 188, 190, 192, 196-197, 199- ### 190 201, 204-208, 220, 226, and 231, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 260, 265 263, 264, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 322, 323, 324, 325, 326, 327, 330, 331, 334, 338, 339, 342, 343, 344, 345, 346, 347, 351, 355, 357, 360, 362, 366, 367, 368, 369, 370, 371, 377, 378, 379, 380, 381, 382, 383, 385, 386, 387, 389, 390, 391, 392, 393, 394, 395, 399, 400, 407, 408, 409, 412, 414, 416, 417, 418, 419, 420, 422, 426, 432, 433, 437, 438, 439, 441, 442, 443, 448, 449, 451, 452, 453, 454, 455, 456, 457, 458, 467, 468, 476, 471, 472, 473, 474, and 475. The following compounds can be synthesized, in general, based on a similar route to that outlined in Example 7 Compound 66, and 81. The following compounds can be synthesized, in general, based on a similar route to that outlined in Example 8, Compound 132, 133, 156, 157, 328, 329, 373, 374, 375, 376, 425, 444 and 445. Table 2 depicts data for certain exemplary compounds made in general by a similar route to that outlined in the above Examples. ### TABLE 2 | No. | M + 1
(obs) | RT
(min) | 1H-NMR | |-----|----------------|-------------|---| | 1 | 295 | 2.68 | (1H, DMSO-d6): 2.12-2.15 (2H, m), 3.15-3.20 (2H, m), | | - | 2,0 | 2.00 | 3.35-3.40 (2H, m), 3.75-3.80 (2H, t), 4.00-4.05 (2H, m), | | | | | 6.75-6.77 (1H, d), 7.30-7.33 (1H, m), 7.48-7.50 (1H, d), 7.67-7.71 (1H, | | | | | t), 8.57-8.58 (1h, d), 8.75-8.77 (3H, br s) | | 2 | 319 | 2.84 | (1H, DMSO-d6): 2.05-2.15 (2H, m), 3.08-3.18 (2H, m), | | | | | 3.25-3.30 (2H, m), 3.70-3.75 (2H, m), 3.97-4.03 (2H, m), 4.36 (1H, | | | | | s), 6.75-6.78 (1H, d), 7.45-7.47 (1H, d), 7.65-7.69 (1H, t), | | 3 | 295 | 2.88 | 7.66 (1H, s), 7.79 (1H, s), 9.20-9.30 (2H, m).
(d4-MeOH, 400 MHz) 2.58 (3H, s), 3.40 (4H, t), 3.88 (4H, t), | | , | 275 | 2.00 | 6.94 (1H, d), 7.30 (1H, dd), 7.65 (1H, d), 8.55 (1H, d), | | | | | 8.68 (1H, d) | | 4 | 405.06 | 3.43 | (DMSO) 1.05 (6H, m), 1.42 (2H, m), 1.58 (1H, m), 3.06 (2H, | | | | | m), 3.40 (3H, m), 4.50 (1H, m), 4.65 (1H, m), 7.10 (1H, m), | | | | | 7.23 (1H, m), 8.20 (1H, m), 8.67 (1H, m), 8.80 (1H, m), | | _ | 105.00 | 2.52 | 8.99 (1H, m), 9.06 (1H, m), 13.87 (1H, s) | | 5 | 425.02 | 3.52 | (DMSO) 3.50 (4H, m), 4.74 (3H, m), 7.19 (2H, m), | | | | | 7.46-7.59 (5H, m), 8.07 (1H, m), 8.37 (2H, m), 8.56 (1H, m), 9.34 (1H, br s), 9.62 (1H, br s), 14.03 (1H, s) | | 6 | | | 1H (MeOD) 0.95-0.97 (6H, d), 1.35-1.38 (2H, m), | | Ü | | | 1.77-1.84 (1H, m), 2.60-2.66 (1H, m), 2.83-1.92 (2H, m), 3.00-3.12 (2H, | | | | | m), 4.28-4.31 (1H, m), 4.47-4.50 (1H, dd), 4.56-4.87 (2H, m), | | | | | 6.87-6.89 (1H, d), 7.26-7.29 (1H, m), 7.74-7.76 (1H, d), | | | | | 8.46-8.48 (1H, d), 8.55-8.57 (1H, d). | | 7 | 337.13 | 3.02 | 1H NMR (400.0 MHz, DMSO) d 0.95 (dd, J = 6.5, 16.2 Hz, | | | | | 6H), 1.46-1.61 (m, 2H), 1.88 (dd, J = 6.8, 14.1 Hz, 1H), | | | | | 3.03 (dd, J = 10.7, 13.9 Hz, 1H), 3.21-3.28 (m, 2H), 3.44 (d, J = 11.4 Hz, | | | | | 3H), 4.43 (d, $J = 11.7$ Hz, $1H$), 4.57 (s, $1H$), 7.00 (d, $J = 8.5$ Hz, | | | | | 1H), 7.29 (dd, $J = 4.5$, 8.0 Hz, 1H), 7.57 (d, $J = 7.4$ Hz, | | | | | 1H), 7.76 (t, J = 8.0 Hz, 1H), 8.59 (dd, J = 1.5, 4.5 Hz, | | | 240.05 | 2.05 | 1H), 8.75-8.82 (m, 2H), 8.96 (s, 1H) and 13.90 (s, 1H) ppm | | 8 | 349.05 | 2.85 | 1H NMR (400.0 MHz, DMSO) d 3.25 (s, 4H), 3.90-3.92 (m, 4H), 7.11 (d, J = 9.1 Hz, 1H), 7.30 (dd, J = 4.5, 8.1 Hz, 1H), | | | | | 8.07 (d, J = 9.1 Hz, 1H), 8.40 (d, J = 8.0 Hz, 1H), 8.60 (dd, J = 1.5, | | | | | 4.5 Hz, 1H), 8.90 (s, 1H) and 14.01 (s, 1H) ppm | | 9 | 281.03 | 2.38 | 1H NMR (400.0 MHz, DMSO) d 3.30 (s, 4H), 3.84 (t, J = 5.1 Hz, | | | 201100 | 2.00 | 4H), 6.96 (d, J = 8.4 Hz, 1H), 7.31 (dd, J = 4.5, 8.1 Hz, | | | | | 1H), 7.58 (d, $J = 7.4$ Hz, 1H), $7.73-7.77$ (m, 1H), 8.58 (dd, $J = 1.5$, | | | | | 4.5 Hz, 1H), 8.79 (dd, J = 1.7, 8.1 Hz, 1H), 8.82 (s, 2H) | | | | | and 13.89 (s, 1H) ppm | | 10 | 351.12 | 8.03 | 1H NMR (400.0 MHz, MeOH) d 8.87 (dd, J = 1.3, 8.1 Hz, 1H), | | | | | 8.58 (dd, J = 1.3, 4.5 Hz, 1H), 7.77 (t, J = 8.0 Hz, 1H), 7.65 (d, | | | | | J = 7.5 Hz, 1H), 7.31 (dd, J = 4.6, 8.1 Hz, 1H), 6.99 (d, J = 8.4 Hz, | | | | | 1H), 4.96 (d, $J = 13.0$ Hz, 1H), $4.61-4.58$ (m, 1H), | | | | | 3.57-3.43 (m, 2H), 3.04-2.90 (m, 2H), 1.96 (dt, J = 15.1, 5.4 Hz, | | | | | 1H), 1.74-1.67 (m, 1H), 1.61-1.54 (m, 1H), 1.47 (d, $J = 6.5$ Hz, | | | | | 17 ADED 2 continued | |----------|----------------|--------------
--| | No. | M + 1
(obs) | RT
(min) | 1H-NMR | | | | | 3H), 1.08 (d, J = 6.5 Hz, 3H) and 1.02 (d, J = 6.6 Hz, 3H) | | 11 | 351.12 | 7.9 | ppm 1H NMR (400.0 MHz, MeOH) d 8.90 (d, J = 8.1 Hz, 1H), 8.58 (d, J = 4.4 Hz, 1H), 7.76 (t, J = 7.9 Hz, 1H), 7.65-7.62 (m, 1H), 7.32 (dd, J = 4.6, 8.1 Hz, 1H), 6.97 (dd, J = 8.5, 18.3 Hz, | | 12 | 365.14 | 8.72 | 1H), 4.06 (dd, J = 3.3, 26.1 Hz, 2H), 3.93 (dd, J = 6.2, 14.1 Hz, 1H), 3.81 (td, J = 6.6, 3.3 Hz, 1H), 3.74-3.65 (m, 2H), 1.96-1.79 (m, 2H), 1.54-1.48 (m, 4H) and 1.09-0.91 (m, 6H) ppm 1H NMR (400.0 MHz, MeOH) d 8.90-8.88 (m, 1H), 8.58 (dd, J = 1.2, 4.5 Hz, 1H), 7.80-7.76 (m, 1H), 7.65 (d, J = 7.5 Hz, 1H), 7.30 (dd, J = 4.6, 8.1 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 4.92 (s, 1H), 4.82 (s, 1H), 3.50-3.43 (m, 1H), 3.37-3.32 (m, 2H), 3.01-2.93 (m, 2H), 2.00-1.67 (m, 4H), 1.60 (td, J = 9.1, | | 13 | 365.14 | 8.53 | 4.5 Hz, 1H), 1.21 (t, J = 7.5 Hz, 3H), 1.08 (d, J = 6.5 Hz, 2H), 1.04-1.01 (m, 2H) and 0.96-0.91 (m, 1H) ppm 1H NMR (400.0 MHz, MeOH) d 8.90 (d, J = 8.0 Hz, 1H), 8.58 (d, J = 4.5 Hz, 1H), 7.78-7.74 (m, 1H), 7.63 (d, J = 7.5 Hz, 1H), 7.31 (dd, J = 4.6, 8.1 Hz, 1H), 6.94 (d, J = 8.4 Hz, 1H), 4.14-4.04 (m, 2H), 3.89 (dd, J = 6.2, 14.2 Hz, 1H), 3.76 (q, J = 7.0 Hz, 1H), 3.70-3.67 (m, 1H), 3.56 (dd, J = 8.7, 15.2 Hz, 1H), 3.70-3.67 (m, 1H), 3.50 (dd, J = 8.7, 15.2 Hz, 1H), 3.70 15. | | 14 | 379.19 | 9.19 | 1H), 1.94-1.77 (m, 4H), 1.54-1.48 (m, 1H), 1.16 (t, J = 7.5 Hz, 3H), 1.07-1.04 (m, 3H) and 0.98 (d, J = 6.4 Hz, 3H) ppm 1H NMR (400.0 MHz, MeOH) d 8.88 (dd, J = 1.5, 8.1 Hz, 1H), 8.58 (dd, J = 1.5, 4.6 Hz, 1H), 7.78 (t, J = 8.0 Hz, 1H), 7.65 (d, J = 7.5 Hz, 1H), 7.30 (dd, J = 4.6, 8.1 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 4.86 (s, 1H), 4.80-4.77 (m, 1H), 3.49-3.42 (m, 2H), 3.02-2.93 (m, 2H), 1.98 (s, 1H), 1.95 (dd, J = 6.5, 12.5 Hz, 1H), 1.9-1.55 (m, 6H), 1.09-1.06 (m, 7H) and 1.01 (d, J = 6.6 Hz, | | 15 | 379.19 | 9.03 | 3H) ppm 1H NMR (400.0 MHz, MeOH) d 8.89 (dd, J = 1.5, 8.1 Hz, 1H), 8.58 (dd, J = 1.5, 4.6 Hz, 1H), 7.78-7.74 (m, 1H), 7.63 (d, J = 7.5 Hz, 1H), 7.31 (dd, J = 4.6, 8.1 Hz, 1H), 6.94 (d, J = 8.4 Hz, 1H), 4.12-4.05 (m, 2H), 3.89-3.76 (m, 2H), 3.68-3.61 (m, 2H), 1.91-1.80 (m, 3H), 1.74-1.47 (m, 4H) and 1.07-0.92 (m, 10H) ppm | | 16 | 371 | 8.92 | 1.07 0.52 (iii, 1011) ppii | | 17
18 | 371
391 | 8.85
9.3 | | | 19 | 295 | 6.22 | 1H NMR (MeOD): 1.44-1.46 (3H, d), 3.07-3.10 (1H, m), 3.27-3.36 (2H, masked), 3.45-3.55 (2H, m), 4.50-4.59 (2H, m), 6.95-6.98 (1H, d), 7.32-7.35 (1H, m), 7.63-7.65 (1H, d), 7.73-7.75 (1H, t), 8.54-8.57 (3H, d + 2HCOOH), 8.88-8.90 (1H, d) | | 20 | 323 | 7.32 | 7.75-7.75 (111, t), 6.54-6.57 (311, d + 211COO11), 6.66-6.50 (111, d) | | 21
22 | 357
296 | 8.35
7.27 | | | 23 | 309 | 7.27 | | | 24 | 295 | 6.14 | | | 25
26 | 349
295 | 8.23
7.67 | | | 27 | 282 | 7.9 | | | 28 | 363.06 | 8.37 | 1H NMR (400.0 MHz, MeOH) d 8.89 (dd, J = 1.4, 8.1 Hz, 1H), 8.57 (dd, J = 1.4, 4.5 Hz, 1H), 7.82-7.78 (m, 1H), 7.71 (d, J = 7.5 Hz, 1H), 7.31 (dd, J = 4.6, 8.1 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 4.82 (dd, J = 2.2, 14.2 Hz, 2H), 4.49-4.44 (m, 1H), 3.95-3.92 (m, 1H), 3.65 (dd, J = 7.2, 10.5 Hz, 1H), 3.50-3.39 (m, 2H), 3.02-2.88 (m, 1H) and 2.84-2.68 (m, 1H) ppm | | 29 | 485.04 | 3.84 | (DMSO) 0.89 (6H, m), 1.47 (2H, m), 1.73 (1H, m), 3.04 (2H, m), 3.34 (3H, m), 4.45 (1H, m), 4.69 (1H, m), 7.15 (1H, m), 8.05 (1H, m), 8.67 (1H, m), 8.98 (1H, m) | | 30 | 295.06 | 2.54 | (DMSO) 1.33 (3H, s), 2.54 (1H, m), 3.02 (2H, m), 3.65 (2H, m), 4.41 (2H, m), 6.96 (1H, m), 7.21 (1H, m), 7.32 (1H, m), 7.75 (1H, m), 8.58 (1H, m), 8.76 (1H, m), | | 31 | 295.06 | 2.54 | (DMSO) 1.32 (3H, s), 2.66 (1H, m), 3.02 (2H, m), 3.65 (2H, m), 4.48 (2H, m), 6.98 (1H, m), 7.22 (1H, m), 7.33 (1H, m), 7.77 (1H, m), 8.57 (1H, m), 8.76 (1H, m), | | 32 | 371 | 8.85 | | | 33
34 | 280
309 | 5.92
7.53 | | | 35 | 387 | 8.53 | | | 36 | 353.12 | 6.52 | 1H NMR (400.0 MHz, MeOH) d 8.92 (dd, J = 1.3, 8.1 Hz, 1H), 8.56 (dd, J = 1.3, 4.5 Hz, 1H), 7.78-7.74 (m, 1H), 7.65 (d, J = 7.5 Hz, 1H), 7.34 (dd, J = 4.6, 8.1 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 4.63 (dd, J = 1.9, 14.1 Hz, 1H), 4.54 (d, J = 12.1 Hz, 1H), 3.71 (dd, J = 3.6, 6.6 Hz, 1H), 3.54-3.52 (m, 1H), 3.37-3.33 (m, 2H), 3.16 (dd, J = 10.5, 14.1 Hz, 1H), 1.92-1.85 (m, 2H) and 1.37 (d, J = 2.7 Hz, 6H) ppm | | No. | M + 1
(obs) | RT
(min) | 1H-NMR | |-----|----------------|-------------|---| | 37 | 371 | 8.47 | | | 38 | 371 | 3.55 | (d6-DMSO, 400 MHz) 0.92 (3H, d), 0.98 (3H, d),
1.47-1.54 (1H, m), 1.57-1.64 (1H, m), 1.92-1.98 (1H, m), | | | | | 2.98-3.05 (1H, m), 3.24-3.45 (4H, m), 4.31 (1H, d), 4.72 (1H, d), | | | | | 7.02 (1H, d), 7.58 (1H, d), 7.78 (1H, t), 8.63 (1H, d), 8.72 (1H, d), | | 39 | 338 | 3 | 8.78-8.82 (1H, m), 9.01 (1H, brs), 14.22 (1H, s)
(d6-DMSO, 400 MHz) 0.92-0.94 (6H, dd), 1.24-1.35 (2H, m), | | 39 | 336 | 3 | 1.79-1.88 (1H, m), 2.56-2.61 (1H, m), 2.67-2.80 (2H, m), | | | | | 2.92-3.05 (2H, m), 4.25 (1H, d), 4.33 (1H, d), 7.32 (1H, dd), | | 40 | 351 | 3.23 | 8.30 (1H, s), 8.57-8.61 (2H, m), 8.73 (1H, d), 14.14 (1H, brs) (d6-DMSO, 400 MHz) 0.93 (3H, d), 0.95 (3H, d), | | 40 | 331 | 3.23 | 1.45-1.58 (2H, m), 1.75-1.81 (1H, m), 2.38 (3H, s), 2.86-2.94 (1H, m), | | | | | 3.16-3.37 (2H, m), 3.49-3.85 (4H, m), 7.30 (1H, dd), | | | | | 7.70 (1H, d), 7.80 (1H, d), 8.58 (1H, dd), 8.57-8.65 (1H, brs), 8.80 (1H, dd), 8.81-8.90 (1H, m) | | 41 | 321.1 | 6.89 | 1H NMR (400.0 MHz, MeOH) d 8.68 (dd, J = 1.0, 8.0 Hz, 1H), | | | | | 8.34-8.33 (m, 1H), 7.53 (t, $J = 8.0$ Hz, 1H), 7.42 (d, $J = 7.5$ Hz, | | | | | 1H), 7.10 (dd, J = 4.6, 8.1 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 4.50 (d, 1H), 4.30 (d, 1H), 3.33 (d, J = 12.4 Hz, 1H), | | | | | 3.14-3.08 (m, 2H), 2.48 (d, J = 3.2 Hz, 1H), 0.63 (d, J = 4.1 Hz, | | | | | 1H), 0.58 (d, J = 4.1 Hz, 2H) and 0.38-0.35 (m, 3H) ppm | | 42 | 314 | 7.53 | 1H NMR (MeOD): 3.43-3.46 (4H, m), 3.93-3.98 (4H, m), 6.98-7.00 (1H, d), 7.66-7.67 (1H, d), 7.76-7.80 (1H, t), | | | | | 8.55 (1H, s), 8.82 (1H, s), | | 43 | 329 | 7.87 | 1H NMR (MeOD): 1.54-1.57 (3H, d), 3.07-3.12 (1H, dd), | | | | | 3.37-3.39 (1H, m), 3.60-3.70 (2H, m), 4.55-4.70 (2H, m), 7.02-7.04 (1H, d), 7.68-7.70 (1H, d), 7.78-7.82 (1H, t), 8.58 (1H, s), | | | | | 8.84 (1H, s), | | 44 | 423.09 | 3.6 | (DMSO) 0.83 (6H, m), 1.48 (2H, m), 1.79 (1H, m), 3.08 (1H, m), 3.18 (1H, m), 3.22 (2H, m), 4.45 (1H, m), 4.63 (1H, m) | | | | | m), 3.18 (1H, m), 3.32 (3H, m), 4.45 (1H, m), 4.63 (1H, m), 7.16 (1H, m), 8.05 (1H, m), 8.19 (1H, m), 8.67 (1H, m), | | | | | 14.24 (NH), | | 45 | 367.07 | 3.12 | (DMSO) 3.25 (4H, s), 3.90 (4H, m), 7.10 (1H, m), 8.06 (1H, m), 8.18 (1H, m), 8.65 (1H, m), 8.82 (NH), 14.20 (NH), | | 46 | 355.14 | 3.29 | (DMSO) 0.92 (6H, m), 1.50 (2H, m), 1.87 (1H, m), 2.95 (1H, | | | | | m), 3.20 (2H, m), 3.46 (2H, m), 4.34 (1H, m), 4.62 (1H, m), | | | | | 7.00 (1H, m), 7.56 (1H, m), 7.77 (1H, m), 8.43 (1H, m), 8.69 (1H, m), 14.13 (NH), | | 47 | 371 | 8.14 | 1H NMR (MeOD) 0.97-1.5 (6H, dd), 1.51-1.66 (2H, m), | | | | | 1.79-1.86 (1H, m), 3.01-3.07 (1H, dd), 3.29-3.50 (3H, masked), | | | | | 4.45-4.48 (1H, m), 4.65-4.69 (1H, m), 7.04-7.08 (1H, d), 7.30-7.33 (1H, dd), 7.82-7.85 (1H, d), 8.46-8.49 (1H, d), | | | | | 8.59-8.61 (1H, d). | | 48 | 315 | 6.49 | 1H NMR (MeOD) 3.90-3.93 (4H, m), 4.93 (4H, s),
7.02-7.04 (1H, d), 7.30-7.33 (1H, dd), 7.81-7.83 (1H, d), 8.47-8.49 (1H, | | | | | d), 8.58-8.59 (1H, d). | | 49 | 413 | 8.85 | 1H (MeOD) 095-1.03 (6H, dd), 1.53-1.61 (1H, m), 1.62 | | | | | 1.66 (1H, m), 1.83-1.87 (1H, m), 3.03-3.09 (1H, m), 3.32-3.51 (4H, m), 4.454-4.57 (1H, m), 4.73-4.77 (1H, m), 7.05-7.08 (1H, m), | | | | | 7.14-7.23 (5H, m), 7.82-7.89 (2H, m), 8.45-8.46 (1H, d). | | 50 | 357 | 7.49 | 1H (MeOD) 3.35-3.40 (4H, m), 3.95-3.98 (4H, m), | | | | | 7.05-7.08 (1H, m), 7.13-7.24 (5H, m), 7.82-7.89 (2H, m), 8.45-8.46 (1H, d). | | 51 | 363 | 8.12 | 1H (MeOD)
1.04-1.08 (6H, dd), 1.55-1.63 (1H, m), | | | | | 1.71-1.75 (1H, m), 1.90-1.96 (1H, m), 3.09-3.15 (1H, m), 3.32-3.57 (4H, | | | | | m), 4.45-4.57 (1H, m), 4.65-4.69 (1H, m), 4.74-4.77 (2H, m), 7.0-7.02 (1H, d), 7.71 (1H, d), 8.74-8.76 (1H, d), | | | | | 8.94-8.96 (1H, d). | | 52 | 307 | 6.89 | 1H (MeOD) 3.37-3.40 (4H, m), 3.93-3.96 (4H, m), 5.20-5.23 (1H, d) 5.70-5.75 (1H, d) 7.03-7.05 (1H, d) 7.29-7.32 (1H, d) | | | | | 5.20-5.23 (1H, d), 5.70-5.75 (1H, d), 7.03-7.05 (1H, d), 729-7.32 (1H, dd), 7.39-7.46 (1H, dd), 8.07-8.09 (1H, d), 8.55-8.58 (1H, d). | | 53 | 357.09 | 8.45 | 1H NMR (400.0 MHz, MeOH) d 8.89 (dd, J = 1.6, 8.1 Hz, 1H), | | | | | 8.53 (dd, J = 1.6, 4.6 Hz, 1H), 7.70-7.66 (m, 1H), 7.55 (dd, J = 4.7, 7.3 Hz, 3H), 7.46-7.42 (m, 2H), 7.38-7.34 (m, 1H), | | | | | 7.3 Hz, 3H), 7.40-7.42 (III, 2H), 7.38-7.34 (III, 1H),
7.20 (dd, J = 4.6, 8.1 Hz, 1H), 6.87 (d, J = 8.4 Hz, 1H), | | | | | 4.56 (s, 1H), 4.55 (dd, J = 1.3, 12.7 Hz, 1H), 4.42-4.39 (m, 1H), | | | | | 3.98 (dd, J = 3.0, 10.7 Hz, 1H), 3.29-3.25 (m, 1H) and 3.20-2.97 (m, 3H) ppm | | 54 | 359 | 7.84 | (d6-DMSO, 400 MHz) 1.71 (3H, t), 2.02-2.13 (2H, m), | | | | | 2.59 (1H, t), 2.76-2.90 (2H, m), 2.96-3.05 (2H, m), 4.07 (1H, d), | | | | | 4.50 (1H, d), 6.81 (1H, d), 7.25 (1H, dd), 7.46 (1H, d),
7.66 (1H, t), 8.56 (1H, d), 8.82 (1H, d), 13.84 (1H, s) | | 55 | 381 | 9.05 | 1H NMR (MeOD) 1.04-1.08 (6H, dd), 1.45-1.55 (1H, m), | | | | | 1.65-1.75 91H, m), 1.90-2.00 (1H, m), 3.08-3.15 (1H, m), | | | | | 3.35-3.55 (4H, m), 4.60-4.70 (1H, m), 4.85-4.90 (1H, m),
5.10-5.20 (1H, dd), 5.55-5.65 (1H, dd), 7.11 (1H s), | | | | | 7.30-7.35 (1H, m), 7.85 (1H, s), 8.75 (1H, d), 8.90 (1H, d). | | | | | 7.30-7.35 (1H, m), 7.85 (1H, s), 8.75 (1H, d), 8.90 (1H, d). | | | | | TABLE 2-continued | |-----|----------------|-------------|--| | No. | M + 1
(obs) | RT
(min) | 1H-NMR | | 56 | 351 | 9.05 | 1H NMR (MeOD) 1.0-1.10 (6H, dd), 1.55-1.60 (1H, m), 1.68-1.74 (1H, m), 1.93-1.95 (1H, m), 2.43 (3H, s), 3.04-3.10 (1H, m), 3.32-3.55 (3H, m), 4.51-4.53 (1H, m), 4.74-4.78 (1H, m), 6.83 (1H s), 7.29-7.32 (1H, dd), 7.53 (1H, s), | | 57 | 405 | 9.6 | 11, 0.83 (114 s), 7.29-7.32 (114, dd), 7.33 (114, s), 8.56-8.58 (1H, d), 8.87-8.89 (1H, d). 11 NMR (MeOD) 1.04-1.08 (6H, dd), 1.58-1.63 (1H, m), 1.69-1.76 (1H, m), 1.91-1.96 (1H, m), 3.16-3.22 (1H, m), 3.32-3.55 (4H, m), 4.60-4.63 (1H, m), 4.83-4.87 (1H, m), 7.20 (1H s), 7.33-7.36 (1H, dd), 7.85 (1H, s), 8.60 (1H, d), | | 58 | 385 | 8.8 | 8.85 (1H, d) 1H NMR (MeOD) 0.90-1.00 (6H, dd), 1.50-1.55 (1H, m), 1.60-1.65 (1H, m), 1.79-1.83 (1H, m), 2.97-3.03 (1H, m), 3.27-3.48 (4H, m), 4.43-4.47 (1H, m), 4.63-4.67 (1H, m), 7.05 (1H, | | 59 | 323.11 | 7.24 | s), 7.28-7.32 (1H, dd), 8.37-8.40 (1H, d), 8.58-8.60 (1H, d). 1H NMR (400.0 MHz, MeOH) d 8.96 (dd, J = 1.6, 8.1 Hz, 1H), 8.55 (dd, J = 1.5, 4.5 Hz, 1H), 7.68 (dd, J = 2.9, 15.9 Hz, 1H), 7.56-7.53 (m, 1H), 7.30 (dd, J = 4.5, 8.1 Hz, 1H), 6.84 (d, J = 8.5 Hz, 1H), 4.48-4.45 (m, 1H), 4.28 (d, J = 11.4 Hz, 1H), 3.17-3.13 (m, 1H), 3.04-2.91 (m, 2H), 2.82 (dd, J = 3.2, 10.2 Hz, 1H), 2.63 (dd, J = 10.5, 12.5 Hz, 1H), 1.60-1.47 (m, 4H) | | 60 | 296.02 | 5.18 | and 1.06 (dd, J = 4.0, 6.8 Hz, 3H) ppm 1H NMR (400.0 MHz, MeOH) d 9.17 (dd, J = 1.5, 8.1 Hz, 1H), 8.58 (dd, J = 1.5, 4.6 Hz, 1H), 8.13-8.11 (m, 1H), 7.96-7.90 (m, 1H), 7.71-7.69 (m, 1H), 7.41-7.35 (m, 1H), 3.29-3.20 (m, 2H), 3.07 (d, J = 11.3 Hz, 2H), 2.49 (td, J = 13.3, 5.9 Hz, | | 61 | 295.04 | 2.37 | 2H) and 1.79 (d, J = 12.3 Hz, 2H) ppm 1H NMR (400.0 MHz, DMSO) d 1.51-1.61 (m, 2H), 2.01 (d, J = 9.9 Hz, 2H), 3.05 (t, J = 12.0 Hz, 2H), 3.37 (d, J = 4.8 Hz, 1H), 4.44 (s, 2H), 6.93 (d, J = 8.5 Hz, 1H), 7.32 (dd, J = 4.5, 8.0 Hz, 1H), 7.49 (d, J = 7.4 Hz, 1H), 7.67-7.71 (m, 1H), 7.91 (s, NH2), 8.58 (dd, J = 1.5, 4.4 Hz, 1H), 8.78 (dd, J = 1.4, 8.0 Hz, 1H), 9.878 9.87 | | 62 | 323.11 | 2.75 | 1H) and 13.86 (s, NH) ppm
1H NMR (400.0 MHz, DMSO) d 1.01 (m, 6H), 1.61 (m, 1H),
2.18 (m, 1H), 2.49 (m, 1H), 2.75 (m, 2H), 3.07 (m, 1H),
4.09 (m, 1H), 4.39 (m, 1H), 6.80 (m, 1H), 7.23 (m, 1H), 7.43 (m, 1H), | | 63 | 267.02 | 2.37 | 7.64 (m, 1H), 8.57 (m, 1H), 8.84 (m, 1H), 13.85 (NH) 1H NMR (400.0 MHz, DMSO) d 3.65-3.68 (m, 2H), 3.90 (m, 1H), 4.25 (t, J = 7.5 Hz, 2H), 6.37 (d, J = 8.0 Hz, 1H), 7.30 (s, 1H), 7.43 (d, J = 7.4 Hz, 1H), 7.61 (t, J = 7.8 Hz, 1H), 8.55 (dd, J = 1.6, 4.5 Hz, 1H) and 8.91 (dd, J = 1.6, 8.0 Hz, 1H) | | 64 | 309.11 | 2.48 | ppm 1H NMR (400.0 MHz, DMSO) d 1.17 (m, 2H), 1.49 (m, 1H), 1.82 (m, 2H), 2.49 (m, 2H), 2.95 (m, 2H), 4.39 (m, 2H), 6.85 (m, 1H), 7.30 (m, 1H), 7.42 (d, J = 7.4 Hz, 1H), 7.63 (m, 1H), | | 65 | 417.05 | 3.34 | 8.58 (m, 1H) and 8.78 (m, 1H) ppm
1H NMR (400.0 MHz, DMSO) d 2.80 (d, J = 10.7 Hz, 1H),
3.01 (d, J = 3.1 Hz, 1H, NH), 3.23 (dd, J = 9.6, 12.8 Hz, 2H),
3.54-3.56 (m, 1H), 4.03 (d, J = 12.9 Hz, 1H), 4.51 (dd, J = 2.8,
12.7 Hz, 1H), 7.03 (d, J = 9.1 Hz, 1H), 7.25 (dd, J = 4.5,
8.1 Hz, 1H), 7.99 (d, J = 9.2 Hz, 1H), 8.40 (dd, J = 1.5, 8.1 Hz, | | 66 | 338 | 7.22 | 1H), 8.56 (dd, J = 1.4, 4.3 Hz, 1H) and 13.98 (s, NH) ppm
1H NMR (MeOD) 1.01-1.09 (6H, m), 1.60-1.67 (1H, m),
1.71-1.78 (1H, m), 1.92-1.99 (1H, m), 3.32-3.78 (5H, m),
4.90-5.505 (2H, masked), 7.21-7.23 (1H, m), 7.47-7.50 (1H, dd), | | 67 | 309.11 | 2.55 | 8.37-8.39 (1H, d). 8.71-8.72 (1H, d), 8.79-8.82 (1H, d). 1H NMR (400.0 MHz, DMSO) d 0.99 (t, J = 7.5 Hz, 3H), 1.45 (d, 2H), 2.27 (m, 1H), 2.49 (m, 1H), 2.73-2.83 (m, 2H), 3.07 (m, 1H), 4.15 (m, 1H), 4.31 (m, 1H), 6.80 (m, 1H), 7.28 (m, 1H), 7.45 (d, J = 7.4 Hz, 1H), 7.60 (m, 1H), 8.55 (m, 1H), 8.80 (m, 1H) and 13.83 (NH) ppm | | 68 | 295.06 | 2.45 | 1H NMR (400.0 MHz, DMSO) d 1.26 (m, 1H), 1.51 (m, 1H), 1.78 (m, 1H), 1.90 (m, 1H), 2.72 (m, 2H), 2.94 (m, 1H), 4.23 (m, 2H), 6.82 (m, 1H), 7.30 (m, 1H), 7.40 (m, 1H), 7.61 (m, | | 69 | 413.16 | 4.14 | 1H), 8.54 (m, 1H) and 8.81 (m, 1H) ppm
1H NMR (400.0 MHz, DMSO) d 2.22 (s, 3H), 2.35 (s, 6H),
2.57 (m, 4H), 3.49 (s, 2H), 3.54-3.56 (m, 3H), 6.83-6.85 (m,
3H), 7.28 (dd, J = 4.5, 8.0 Hz, 1H), 7.48 (d, J = 7.4 Hz, 1H),
7.66 (dd, J = 7.6, 8.3 Hz, 1H), 8.55 (dd, J = 1.5, 4.5 Hz, 1H),
8.70 (dd, J = 1.6, 8.1 Hz, 1H), and 1.81 (NII) terms | | 70 | 295 | 6.18 | 8.79 (dd, J = 1.6, 8.1 Hz, 1H) and 13.81 (NH) ppm
1H NMR (MeOD) 1.47-1.48 (3H, d), 3.083.14 (1H, m),
3.31-3.38 (2H, masked), 3.51-3.59 (2H, m), 6.97-6.99 (1H, m),
7.32-7.36 (1H, dd), 7.65-7.66 (1H, d), 7.74-7.78 (1H, t), | | 71 | 355.14 | 7.6 | 8.56-8.58 (1H, d), 8.88-8.90 (1H, d). 1H NMR (400.0 MHz, MeOH) d 9.01 (dd, J = 1.5, 8.1 Hz, 1H), 8.54 (dd, J = 1.6, 4.6 Hz, 1H), 7.70-7.66 (m, 1H), 7.56 (d, J = 7.4 Hz, 1H), 7.29 (dd, J = 4.6, 8.1 Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H), 4.68 (d, J = 12.1 Hz, 1H), 4.23 (d, J = 9.2 Hz, 1H), | | TABLE 2-continued | | | | | |-------------------|--------|-------|--|--| | | M + 1 | RT | | | | No. | (obs) | (min) | 1H-NMR | | | 72 | 421.14 | 2.95 | 3.17-3.15 (m, 2H), 3.05-3.00 (m, 2H), 2.68 (dd, J = 10.4, 12.8 Hz, 1H), 1.98-1.78 (m, 2H), 1.52 (s, 3H) and 1.47 (s, 3H) ppm 1H NMR (400.0 MHz, DMSO) d 1.15 (d, J = 6.1 Hz, 6H), 1.44 (m, 2H), 2.74 (m, 2H), 3.00 (m, 3H), 4.21-4.35 (m, 2H), | | | 73 | 352.16 | 6 | 6.93 (m, 1H), 7.27 (m, 1H), 7.94 (m, 1H), 8.43 (m, 1H), 8.61 (m, 1H) and 13.95 (NH) ppm
1H NMR (400.0 MHz, MeOH) d 9.03 (dd, J = 1.5, 8.1 Hz, 1H), | | | 13 | 332.10 | Ü | 8.62-8.56 (m, 1H), 8.16 (d, J = 7.5 Hz, 1H), 7.95 (t, J = 7.8 Hz, 1H), 7.94 (s, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.34 (dd, J = 4.6, 8.1 Hz, 1H), 3.15-3.11 (m, 1H), 2.94 (d, J = 12.8 Hz, 1H), 2.84-2.65 (m, 3H),
1.96-1.89 (m, 1H), 1.75 (qn, J = 6.8 Hz, 1H), 1.55 (dd, J = 11.4, 12.6 Hz, 1H), 1.38 (t, J = 7.0 Hz, 1H) | | | 74 | 309.11 | 2.63 | 2H), 0.91 (dd, J = 6.6, 8.8 Hz, 1H), 0.80 (d, J = 6.6 Hz, 3H) and 0.74 (d, J = 6.6 Hz, 1H) ppm 1H NMR (400.0 MHz, DMSO) d 1.05-1.15 (m, 1H), 1.37-1.46 (m, 2H), 1.66 (dd, J = 3.4, 13.2 Hz, 3H), 2.37-2.62 (m, 1H), 2.84-2.91 (m, 2H), 4.21 (m, 1H), 4.36 (d, J = 9.5 Hz, 1H), 6.73 (t, J = 8.2 Hz, 1H), 7.19 (dd, J = 4.5, 8.1 Hz, 1H), | | | 75 | 377.06 | 2.95 | 7.25-7.34 (m, 1H), 7.51-7.55 (m, 1H), 8.46 (dd, J = 1.5, 4.5 Hz, 1H) and 8.79 (dd, J = 1.5, 8.0 Hz, 1H) ppm 1H NMR (400.0 MHz, DMSO) d 0.93 (t, J = 7.5 Hz, 3H), 1.37-1.41 (m, 2H), 2.29 (m, 1H), 2.56 (m, 1H), 2.68 (m, 1H), 2.93 (d, J = 2.6 Hz, 2H), 4.23 (d, J = 12.0 Hz, 1H), 4.39 (d, J = 11.1 Hz, 1H), 6.94 (d, J = 9.1 Hz, 1H), 7.22-7.23 (m, 1H), 7.91 (d, J = 9.1 Hz, 1H), 8.40 (dd, J = 1.6, 8.1 Hz, 1H) and 8.54 (d, J = 3.9 Hz, | | | 76 | 337 | 7.97 | 1H) ppm 1H NMR (MeOD): 1.08 (9H, s), 2.95-3.05 (2H, m), 3.10-3.30 (3H, m), 3.45-3.50 (1H, m), 4.50-4.55 (1H, m), 6.83-6.86 (1H, d), 7.16-7.19 (1H, dd), 7.52-7.54 (1H, d), 7.63-7.65 (1H, t), | | | 77 | 405 | 8.92 | 8.43-8.45 (1H, d), 8.78-8.80 (1H, d). 1H NMR (MeOD): 1.12 (9H, s), 3.10-3.20 (2H, m), 3.30-3.35 (2H, m), 3.50-3.55 (1H, m), 4.65-4.70 (1H, m), 5.00-5.10 (1H, d), 7.10-7.12 (1H, d), 7.28-7.32 (1H, dd), 8.07-8.09 (1H, d), | | | 78 | 371 | 8.35 | 8.42-8.44 (1H, dt), 8.58-8.59 (1H, d).
1H NMR (MeOD): 1.01 (9H, s), 2.90-3.00 (2H, m),
3.05-3.20 (2H, m), 3.48-3.50 (1H, m), 4.35-4.40 (1H, m), 4.70-4.80 (1H, | | | 79 | 309 | 6.32 | d), 6.91-6.93 (1H, d), 7.16-7.19 (1H, dd), 7.70-7.72 (1H, d), 8.36-8.39 (1H, d), 8.46-8.47 (1H, d). 1H NMR (MeOD): 1.52 (6H, s), 3.46-3.49 (2H, m), 3.77 (2H, m), 3.99-4.02 (2H, m), 6.95-6.98 (1H, d), 7.33-7.36 (1H, dd), 7.63-7.65 (1H, d), 7.73-7.77 (1H, t), 8.56-8.58 (1H, d), | | | 80 | 377 | 7.68 | 8.88-8.90 (1H, d). 1H NMR (MeOD): 1.46 (6H, s), 3.40-3.43 (2H, m), 3.85 (2H, m), 4.02-4.05 (2H, m), 7.10-7.12 (1H, d), 7.30-7.33 (1H, dd), | | | 81 | 282 | 5.02 | 8.04-8.06 (1H, d), 8.34-8.37 (1H, d), 8.58-8.60 (1H, d).
1H NMR (MeOD): 3.312-3.38 (4H, m), 4.17 (4H, m),
7.01-7.03 (1H, d), 7.33-7.36 (1H, dd), 8.25-8.27 (1H, d), | | | 82 | 419.1 | 3.25 | 8.56-8.57 (1H, d), 8.71-8.73 (1H, d). 1H NMR (400.0 MHz, DMSO) d 0.91 (dd, J = 6.7, 15.3 Hz, 6H), 1.04 (s, 3H), 1.20 (m, 1H), 1.40 (m, 1H), 1.76 (m, 1H), 1.94 (m, 1H), 2.80 (m, 2H), 3.50 (m, 2H), 3.65 (m, 1H), 6.95 (d, J = 9.1 Hz, 1H), 7.90 (d, J = 9.2 Hz, 1H), 8.37-8.39 (m, | | | 83 | 298.02 | 6.05 | 1H), 8.58 (dd, J = 1.5, 4.5 Hz, 1H) and 13.94 (s, 1H) ppm.
1H NMR (400.0 MHz, MeOH) d 9.15 (dd, J = 1.5, 8.1 Hz, 1H),
8.58 (dd, J = 1.6, 4.6 Hz, 1H), 8.19-8.17 (m, 1H), 7.94 (t, J = 7.9 Hz,
1H), 7.60 (d, J = 7.9 Hz, 1H), 7.37 (dd, J = 4.6, 8.1 Hz, | | | 84 | 419.13 | 3.27 | 1H), 3.16-3.07 (m, 4H), 2.62-2.43 (m, 2H) and 2.00 (td, J = 12.3, 4.8 Hz, 2H) ppm 1H NMR (400.0 MHz, DMSO) d 0.81-0.85 (m, 7H), 1.05-1.09 (m, 1H), 1.15-1.22 (m, 1H), 1.55-1.76 (m, 5H), 3.05-3.07 (m, 1H), 3.32-3.38 (masked signal, 1H), 3.55-3.61 (m, 1H), 3.85-3.80 (km, 2H), 6.07 (d, 1H), 7.27 (dd, 1H) | | | 85 | 419.11 | 3.23 | 1H), 3.85-3.89 (br m, 2H), 6.97 (d, 1H), 7.27 (dd, 1H), 7.90 (d, 1H), 8.40 (dd, 1H) and 8.59 (dd, 1H) ppm 1H NMR (400.0 MHz, DMSO) d 0.83 (d, 3H), 0.89 (d, 3H), 0.92-0.99 (m, 1H), 1.17-1.34 (m, 2H), 1.52-1.58 (m, 1H), 1.63-1.69 (m, 1H), 1.81-1.85 (m, 1H), 2.43 (td, 1H), 2.63 (dd, 1H), 3.08 (td, 1H), 4.27 (d, 1H), 4.51 (d, 1H), 6.97 (d, 1H), 7.27 (dd, 1H), 7.92 (d, 1H), 8.41 (dd, 1H) and 8.59 (dd, 1H) | | | 86 | 385.1 | 3.15 | ppm 1H NMR (400.0 MHz, DMSO) d 0.93 (dd, J = 6.6, 14.4 Hz, 6H), 1.09 (s, 3H), 1.35 (m, 1H), 1.47 (m, 1H), 1.81 (m, 1H), 2.89 (m, 2H), 3.35 (m, 1H), 3.43 (m, 2H), 3.56 (m, 1H), 6.93 (s, 1H), 7.28 (m, 1H), 7.71 (d, J = 9.0 Hz, 1H), 8.48 (m, 1H), | | | 87 | 407 | 7.35 | 8.58 (d, J = 2.9 Hz, 1H) and 13.93 (s, 1H) ppm. 1H (MeOD) 1.32-1.37 (6H, d), 3.14-3.50 (5H, m), 4.61-4.65 (1H, d), 4.93-4.97 (1H, d), 7.10-7.12 (1H, d), 7.28-7.31 (1H, dd), 8.07-8.09 (1H, d), 8.41-8.44 (1H, d), 8.58-8.59 (1H, d) | | | | | | | | | | TABLE 2-continued | | | | | | |-----|-------------------|-------------|--|--|--|--| | No. | M + 1
(obs) | RT
(min) | 1H-NMR | | | | | 88 | 299 | 5.82 | 1H (MeOD) 3.41-3.43 (4H, m), 3.89-3.91 (4H, m), 7.04-7.07 (1H, dd), 7.32-7.36 (1H, dd), 7.64-7.69 (1H, t), 8.59-8.60 (1H, b), 6.71-6.72 (4H, m) | | | | | 89 | 351.1 | 3.09 | d), 8.71-8.73 (1H, d). 1H NMR (400.0 MHz, DMSO) d 0.95 (dd, J = 6.7, 11.9 Hz, 6H), 1.10 (s, 3H), 1.31 (dd, J = 5.5, 14.0 Hz, 1H), 1.49 (dd, J = 5.5, 14.0 Hz, 1H), 1.85 (t, J = 6.5 Hz, 1H), 2.87-2.91 (m, 2H), 3.42-3.56 (m, 3H), 6.80 (d, J = 8.5 Hz, 1H), 7.30 (dd, J = 4.5, 8.0 Hz, 1H), 7.41 (d, J = 7.3 Hz, 1H), 7.62 (dd, J = 7.6, 8.3 Hz, 1H) 8.56 (dd, J = 1.5 A.5 Hz, 1H), 8.90 (dd, J = 1.5 8.0 Hz) | | | | | 90 | 420.14 | 3.75 | 1H), 8.56 (dd, J = 1.5, 4.5 Hz, 1H), 8.80 (dd, J = 1.5, 8.0 Hz, 1H) and 13.81 (s, 1H) ppm 1H NMR (400.0 MHz, DMSO) d 0.71 (d, 3H), 0.83 (d, 3H), 0.94-1.01 (m, 1H), 1.36-1.45 (m, 2H), 1.49-1.55 (m, 1H), 1.63-1.70 (m, 1H), 1.86-1.91 (m, 1H), 2.68-2.74 (m, 1H), 3.13 (td, 1H), 3.27-3.33 (td, 1H), 4.20 (d, 1H), 4.44 (d, 1H), 6.97 (d, 1H), 7.26 (dd, 1H), 7.92 (d, 1H), 8.40 (dd, 1H), | | | | | 91 | 420.16 | 3.82 | 8.58 (dd, 1H) and 13.95 (br s, 1H) ppm 1H NMR (400.0 MHz, DMSO) d 0.81 (t, 6H), 1.07 (qn, 1H), 1.25 (qn, 1H), 1.64-1.71 (m, 4H), 3.14 (t, 1H), 3.40-3.47 (m, 1H), 3.83 (d, 1H), 4.00-4.03 (m, 2H), 6.96 (d, 1H), 7.27 (dd, 1H), 7.90 (d, 1H), 8.39 (dd, 1H), 8.58 (dd, 1H) and 13.94 (s, 1H) ppm | | | | | 92 | 325 | 7.68 | 111) ppin
111 (MeOD) 3.43-3.46 (4H, m), 3.99-4.02 (4H, m),
5.11-5.17 (4H, m), 5.11-5.17 (1H, dd), 5.48-5.62 (1H, dd), 7.09 (1H, s),
7.33-7.35 (1H, m), 7.84 (1H, s), 8.56-8.58 (1H, d),
8.87-8.89 (1H, d). | | | | | 93 | 295 | 6.6 | \> -/· | | | | | 94 | 349 | 8.35 | | | | | | 95 | 329 | 7.17 | | | | | | 96 | 381 | 6.53 | | | | | | 97 | 363.08 | 2.77 | 1H NMR (400.0 MHz, DMSO) d 2.08 (br m, 2H), 3.23 (br m, | | | | | 98 | 391.12 | 3.4 | 2H), 3.32 (br m, 2H), 3.78 (m, 2H), 4.03 (m, 2H), 6.95 (m, 1H), 7.31 (m, 1H), 7.99 (m, 1H), 8.41 (m, 1H), 8.60 (m, 1H), 8.73 (NH) and 14.00 (NH) ppm 1H NMR (400.0 MHz, DMSO) d 0.95 (t, J = 6.9 Hz, 6H), 1.57 (m, 1H), 2.31 (m, 1H), 2.65 (m, 2H), 2.91 (m, 2H), 4.25 (m, | | | | | 99 | 354.11 | 8.3 | 1H), 4.50 (m, 1H), 6.97 (d, J = 9.1 Hz, 1H), 7.31 (m, 1H), 7.93 (d, J = 9.2 Hz, 1H), 8.43 (d, J = 1.5 Hz, 1H), 8.58-8.59 (m, 1H) and 13.94 (NH) ppm 1H NMR (400.0 MHz, MeOH) d 9.15 (dd, J = 1.5, 8.1 Hz, 1H), 8.57 (dd, J = 1.4, 4.5 Hz, 1H), 8.18-8.16 (m, 1H), 7.94 (t, J = 7.8 Hz, 1H), 7.60 (s, 1H), 7.59 (dd, J = 0.8, 7.2 Hz, 1H), 7.66 (s, 1H), 7.59 (dd, J = 0.8, 7.2 Hz, 1H), 7.67 (dd, J = 1.4, 4.8, 1H, 1H, 1H, 1H, 1H, 1H, 1H, 1H, 1H, 1H | | | | | 100 | 435 | 3.18 | 7.36 (dd, J = 4.6, 8.1 Hz, 1H), 3.16-3.09 (m, 2H), 2.48-2.45 (m, 1H), 2.11-1.95 (m, 2H), 1.79 (qn, J = 6.8 Hz, 1H), 1.47 (dd, J = 7.0, 13.7 Hz, 1H), 1.43 (s, 1H), 1.35-1.28 (m, 1H) and 0.97 (dd, J = 2.1, 6.6 Hz, 6H) ppm (d6-DMSO, 400 MHz) 1.16 (6H, d), 1.74-1.77 (2H, m), 3.06 (3H, s), 3.10-3.38 (5H, m), 4.48 (1H, d), 4.62 (1H, d), 7.08 (1H, d), 7.29 (1H, dd), 8.38 (1H, d), 8.44 (1H, d), 8.60 (1H, d), 8.91-8.96 (1H, m), 14.02 (1H, s) | | | | | 101 | 367 | 2.84 | (d6-DMSO, 400 MHz) 1.23 (6H, d), 1.76-1.81 (1H, m), 1.86-1.91 (1H, m), 2.98-3.07 (1H, m), 3.16 (3H, s), 3.20-3.23 (1H, m), 3.39 (1H, brs), 3.52 (1H, brs), 4.42 (1H, d), 4.62 (1H, d), 6.93 (1H, d), 7.28-7.31 (1H, dd), 7.57 (1H, d), 7.76 (1H, t), 8.58 (1H, brs), 8.59 (1H, d), 8.79 (1H, d), 8.89 (1H, brs), 13.90 (1H, s) | | | | | 102 | 423.09 | 8.67 | Peak 1—1H NMR (400.0 MHz, MeOH) d 8.44 (dd, J = 1.5, 4.6 Hz, 1H), 8.31 (dd, J = 1.5, 8.1 Hz, 1H), 7.84 (d, J = 9.1 Hz, 1H), 7.17 (dd, J = 4.6, 8.1 Hz, 1H), 6.81 (d, J = 9.1 Hz, 1H), 4.49 (d, J = 12.3 Hz, 1H), 4.23 (s, 1H), 2.99-2.92 (m, 3H), 2.83-2.76 (m, 1H), 2.61 (dd, J = 10.5, 13.0 Hz, 1H), 1.71 (d, J = 6.0 Hz, 1H),
1.65 (d, J = 6.0 Hz, 1H), 1.32 (d, J = 3.2 Hz, | | | | | 103 | 403.12 | 8.8 | 3H) and 1.27 (d, J = 3.2 Hz, 3H) ppm Peak 2—1H NMR (400.0 MHz, MeOH) d 8.45 (dd, J = 1.5, 4.6 Hz, 1H), 8.29 (dd, J = 1.5, 8.1 Hz, 1H), 7.83 (d, J = 9.1 Hz, 1H), 7.18 (dd, J = 4.6, 8.1 Hz, 1H), 6.80 (d, J = 9.1 Hz, 1H), 4.74-4.72 (m, 2H), 4.40 (d, J = 12.8 Hz, 1H), 4.21 (s, 1H), 3.02-2.92 (m, 2H), 2.83-2.73 (m, 2H), 2.54 (dd, J = 10.5, 1.2) (Hz, 2.10 Hz, H | | | | | 104 | 403.12 | 8.52 | 12.9 Hz, 1H), 2.10 (d, J = 7.0 Hz, 2H) and 1.64 (s, 3H) ppm
Peak 3—1H NMR (400.0 MHz, MeOH) d 8.45 (dd, J = 1.5, 4.6 Hz,
1H), 8.29 (dd, J = 1.5, 8.1 Hz, 1H), 7.83 (d, J = 9.1 Hz,
1H), 7.18 (dd, J = 4.6, 8.1 Hz, 1H), 6.80 (d, J = 9.1 Hz, 1H),
4.74-4.72 (m, 2H), 4.40 (d, J = 12.8 Hz, 1H), 4.21 (s, 1H),
3.02-2.92 (m, 2H), 2.83-2.73 (m, 2H), 2.54 (dd, J = 10.5,
12.9 Hz, 1H), 2.10 (d, J = 7.0 Hz, 2H) and 1.64 (s, 3H) ppm | | | | | 105 | 339 | 6.3 | 12.9 Hz, 1H), 2.10 (d, J = 7.0 Hz, 2H) and 1.64 (s, 3H) ppm
1H (MeOD) 1.43-1.46 (6H, d), 3.11-3.18 (1H, dd),
3.28-3.36 (4H, masked), 3.52-3.55 (1H, m), 4.57-4.61 (1H, d), | | | | | No. | M + 1
(obs) | RT
(min) | 1H-NMR | |------------|----------------|--------------|--| | 406 | | 7.1 | 6.97-6.99 (1H, d), 7.29-7.33 (1H, dd), 7.65-7.67 (1H, d), 7.76-7.80 (1H, t), 8.56-8.58 (1H, d), 8.91-8.93 (1H, d). | | 106
107 | 339
309 | 7.34
6.47 | 1H (CD3OD) 1.72-1.78 (2H, m), 2.14-2.18 (2H, m), 3.11-3.18 (2H, t), 3.46-3.49 (1H, m), 4.56-4.59 (1H, m), 6.86 (1H, s), 7.33-7.36 (1H, dd), 7.46 (1H, s), 8.57-8.59 (1H, d), 8.87-8.90 (1H, d). | | 108
109 | 363
343 | 7.78
7.05 | | | 110
111 | 329
352.16 | 2.57
6.18 | 1H NMR (400.0 MHz, MeOH) d 9.03 (dd, J = 1.5, 8.1 Hz, 1H), 8.58 (dd, J = 1.5, 4.6 Hz, 1H), 8.18-8.16 (m, 1H), 7.96 (t, J = 7.8 Hz, 1H), 7.66 (d, J = 8.1 Hz, 1H), 7.35 (dd, J = 4.7, 8.2 Hz, 1H), 3.19-3.14 (m, 1H), 2.95 (dt, J = 12.9, 3.8 Hz, 1H), 2.86-2.68 (m, 3H), 1.97-1.90 (m, 1H), 1.76 (qn, J = 6.8 Hz, 1H), 1.57 (dd, J = 11.2, 12.9 Hz, 1H), 1.40 (t, J = 7.1 Hz, 2H), | | 112 | 355 | 2.97 | 0.81 (d, J = 6.5 Hz, 3H) and 0.74 (d, J = 6.6 Hz, 3H) ppm
1H (CD30D) 1.00-1.10 (6H, m), 1.45-1.50 (1H, m),
1.67-1.72 (1H, m), 1.86-1.92 (1H, m), 3.03-3.10 (1H, dd), 3.20-3.55 (4H, m),
4.46-4.49 (1H, d), 4.63-4.67 (1H, d), 7.09-7.12 (1H, d),
7.40-7.43 (1H, m), 7.68-7.72 (1H, t), 8.68-8.69 (1H, d),
8.84-8.86 (1H, d). | | 113 | 391.12 | 3.29 | H NMR (400.0 MHz, DMSO) d 0.89 (t, J = 6.9 Hz, 3H), 1.33-1.39 (m, 4H), 2.45 (m, 1H), 2.57 (d, J = 10.4 Hz, 1H), 2.95 (d, J = 10.4 Hz, 2H), 3.17 (d, J = 4.4 Hz, 1H), 6.97 (d, J = 9.1 Hz, 1H), 7.27 (dd, J = 4.5, 8.1 Hz, 1H), 7.93 (d, J = 9.2 Hz, 1H), 8.40 (dd, J = 1.5, 8.1 Hz, 1H) and 8.58 (dd, J = 1.4, 4.5 Hz, 1H) ppm | | 114 | 455.1 | 3.5 | 1H NMR (400.0 MHz, DMSO) d 2.68-2.84 (m, 2H), 3.03 (m, 2H), 3.73 (s, 3H), 4.07 (m, 1H), 4.34 (m, 1H), 4.56 (m, 1H), 6.97 (m, 2H), 7.26 (m, 2H), 7.58 (m, 1H), 7.80 (m, 1H), 7.94 (m, 1H), 8.32 (m, 1H), 8.49 (m, 1H) | | 115 | 443.1 | 3.59 | 1H NMR (400.0 MHz, DMSO) d 2.94 (m, 2H), 3.09 (m, 2H), 3.83 (m, 1H), 4.45 (m, 2H), 7.32-7.35 (m, 2H), 7.40 (m, 1H), 7.45 (m, 2H), 7.53 (m, 1H), 7.95 (d, J = 9.2 Hz, 1H), 8.42 (dd, J = 1.6, 8.1 Hz, 1H), 8.59 (m, 1H) and 13.95 (NH) ppm | | 116 | 363.12 | 2.98 | 1H NMR (400.0 MHz, DMSO) d 1.03 (d, J = 6.3 Hz, 3H), 2.45 (m, 1H), 2.69-2.72 (m, 2H), 2.89 (d, J = 2.6 Hz, 2H), 4.25-4.30 (m, 2H), 6.97 (d, J = 9.1 Hz, 1H), 7.29 (dd, J = 4.5, 8.1 Hz, 1H), 7.93 (d, J = 9.2 Hz, 1H), 8.38 (dd, J = 1.5, 8.1 Hz, 1H), 8.57 (dd, J = 1.5, 4.4 Hz, 1H) and 13.96 (NH) ppm | | 117 | 363.12 | 3.09 | 111), 8.37 (dd, J = 1.3, 4.4 Hz, 111) and 13.90 (4.1) ppm
114 NMR (400.0 MHz, DMSO) d 1.03 (d, J = 6.2 Hz, 3H),
2.49 (m, 1H), 2.72 (m, 2H), 2.92 (m, 2H), 4.28 (m, 2H), 6.91 (m,
1H), 7.27 (m, 1H), 7.93 (d, J = 9.1 Hz, 1H), 8.38 (d, J = 6.6 Hz,
1H), 8.59 (m, 1H) and 13.95 (NH) ppm | | 118 | 351.19 | 3.07 | 111, 8.3.9 (III, 111) and 13.93 (1(1)) ppin
11 NMR (400.0 MHz, DMSO) d 0.84 (d, 3H), 0.88 (d, 3H),
1.14-1.23 (m, 2H), 1.68-1.87 (m, 4H), 3.22 (br m, 1H),
3.56-3.73 (m, 4H), 6.84 (d, 1H), 7.29 (dd, 1H), 7.42 (d, 1H),
7.63 (dd, 1H), 8.57 (dd, 1H) and 8.81 (dd, 1H) ppm | | 119 | 427 | 3.4 | (d6-DMSO, 400 MHz) 1.69 (3H, t), 2.23-2.42 (2H, m), 3.18-3.24 (2H, m), 3.34-3.41 (3H, m), 4.41 (1H, d), 4.75 (1H, d), 7.09 (1H, d), 7.26 (1H, dd), 8.10 (1H, d), 8.40 (1H, d), | | 120 | 375.11 | 2.92 | 8.60 (1H, dd), 9.08 (9.17 (2H, brm), 14.03 (1H, s)
1H NMR (400.0 MHz, DMSO) d 1.71 (m, 4H), 3.04 (d, J = 10.5 Hz,
2H), 3.51 (m, 2H), 3.97 (m, 2H), 6.79 (m, 1H), 7.23 (m,
1H), 7.92 (d, J = 9.1 Hz, 1H), 8.39 (d, J = 1.6 Hz, 1H), | | 121 | 439.12 | 3.52 | 8.52 (m, 1H) and 14.03 (NH) ppm
1H NMR (400.0 MHz, DMSO) d 2.27 (m, 1H), 2.72 (m, 3H),
2.99 (m, 3H), 4.30 (m, 2H), 6.84 (m, 1H), 7.24 (d, J = 2.0 Hz,
6H), 7.91 (m, 1H), 8.28 (m, 1H), 8.54 (m, 1H) and 13.93 (NH) | | 122 | 363.12 | 2.88 | ppm 1H NMR (400.0 MHz, DMSO) d 1.35 (m, 1H), 1.49 (m, 1H), 1.74 (m, 1H), 1.99 (m, 1H), 2.73 (m, 2H), 3.03 (m, 1H), 4.26 (d, J = 12.8 Hz, 2H), 6.96 (d, J = 9.2 Hz, 1H), 7.31 (m, 1H), 7.91 (d, J = 9.1 Hz, 1H), 8.39 (dd, J = 1.6, 8.1 Hz, 1H) and 8.56-8.57 (m, 1H) ppm | | 123 | 357.1 | 3.02 | 1H NMR (400.0 MHz, DMSO) d 0.89-0.92 (m, 3H), 1.37 (dd, J = 6.5, 18.9 Hz, 4H), 2.46 (s, 1H), 2.55 (m, 1H), 2.80 (m, 1H), 2.92 (m, 1H), 3.09 (m, 1H), 4.29 (m, 2H), 6.89 (d, J = 9.1 Hz, 1H), 7.31 (m, 1H), 7.71 (d, J = 9.0 Hz, 1H), 8.49 (dd, J = 1.5, 8.1 Hz, 2H) and 13.94 (NH) ppm | | 124 | 439.09 | 3.62 | 1H NMR (400.0 MHz, DMSO) d 2.26 (s, 3H), 2.77 (m, 2H), 3.11 (m, 2H), 3.92 (m, 1H), 4.45 (m, 2H), 7.04 (d, J = 9.1 Hz, 1H), 7.14-7.21 (m, 4H), 7.61 (d, J = 7.1 Hz, 1H), 7.94 (d, J = 9.2 Hz, 1H), 8.34 (dd, J = 1.5, 8.0 Hz, 1H), 8.54-8.56 (m, 1H) and 13.97 (NH) ppm | | No. | M + 1
(obs) | RT
(min) | 1H-NMR | |-----|----------------|-------------|--| | 125 | 349.05 | 2.7 | 1H NMR (400.0 MHz, DMSO) d 2.13-2.17 (m, 1H), 2.33-2.43 (m, 1H), 3.65 (m, 3H), 3.84 (q, J = 5.8 Hz, 1H), 4.01 (m, 1H), 6.69 (d, J = 9.0 Hz, 1H), 7.30 (dd, J = 4.5, 8.1 Hz, 1H), 7.99 (d, J = 9.0 Hz, 1H), 8.08 (NH), 8.54 (d, J = 8.0 Hz, 1H), | | 126 | 363.07 | 2.68 | 8.60 (dd, J = 1.5, 4.5 Hz, 1H) and 14.01 (NH) ppm
1H NMR (400.0 MHz, DMSO) d 1.45-1.55 (m, 2H), 1.99 (d, J = 9.9 Hz,
2H), 3.09 (t, J = 12.1 Hz, 2H), 3.39 (d, J = 4.9 Hz,
1H), 4.50 (m, 2H), 7.08 (d, J = 9.1 Hz, 1H), 7.31 (dd, J = 4.5,
8.1 Hz, 1H), 7.88 (NH2), 8.00 (d, J = 9.1 Hz, 1H), 8.37 (dd, J = 1.4,
8.1 Hz, 1H), 8.60 (dd, J = 1.6, 4.4 Hz, 1H) and 14.01 (NH) | | 127 | 377.08 | 2.77 | ppm 1H NMR (400.0 MHz, DMSO) d 0.99-1.09 (m, 2H), 1.62 (d, J = 12.9 Hz, 2H), 1.71 (q, J = 3.8 Hz, 1H), 2.57 (t, J = 6.1 Hz, 2H), 2.80-2.86 (m, 2H), 4.28 (m, 2H), 6.85 (d, J = 9.1 Hz, 1H), 7.11 (dd, J = 4.5, 8.1 Hz, 1H), 7.55 (NH2), 7.76 (d, J = 9.2 Hz, 1H), 8.19 (dd, J = 1.4, 8.1 Hz, 1H), 8.41 (dd, J = 1.5, 4.5 Hz, 1H), and 1.2 (MIL) and 1.2 (MIL) and 1.3 an | | 128 | 377.06 | 2.8 | 4.5 Hz, 1H) and 13.80 (NH) ppm
1H NMR (400.0 MHz, DMSO) d 1.28-1.37 (m, 1H),
1.43-1.52 (m, 1H), 1.76-1.92 (m, 3H), 2.73-2.91 (m, 3H),
3.05 (dd, J = 2.5, 24.4 Hz, 1H), 4.34-4.39 (m, 2H), 7.03 (d, J = 9.1 Hz,
1H), 7.31 (dd, J = 4.5, 8.1 Hz, 1H), 7.98 (d, J = 9.1 Hz,
1H), 8.39 (dd, J = 1.4, 8.1 Hz, 1H), 8.60 (dd, J = 1.5, 4.5 Hz,
1H) and 13.98 (N H) ppm | | 129 | 425.09 | 3.52 | 1H NMR (400.0 MHz, DMSO) d 2.84 (m, 2H), 3.08 (m, 2H), 3.79 (m, 1H), 4.43 (m, 2H), 7.05 (m, 1H), 7.25 (m, 1H), 7.29 (m, 1H), 7.35 -7.39 (m, 2H), 7.49 (d, J = 7.2 Hz, 2H), 7.94 (d, J = 9.2 Hz, 1H), 8.41 (dd, J = 1.5, 8.0 Hz, 1H), 8.58
(m, 1H) and 13.99 (NH) ppm | | 130 | 351.12 | 3.05 | H NMR (400.0 MHz, DMSO) d 0.81 (d, 3H), 0.96 (d, 3H), 1.12-1.24 (m, 1H), 1.42-1.48 (m, 1H), 1.53-1.62 (m, 2H), 1.83-1.91 (m, 1H), 2.01-2.04 (m, 1H), 2.68 (q, 1H), 3.00-3.09 (m, 2H), 4.31-4.34 (m, 1H), 4.66-4.68 (m, 1H), 6.90 (d, 1H), 7.28 (dd, 1H), 7.47 (d, 1H), 7.68 (dd, 1H), 8.58 (dd, 1H), 8.79 (dd, 1H) and 13.88 (br s, 1H) ppm | | 131 | 355 | 3.23 | 1H NMR (CD3OD) 1.00-1.05 (6H, d), 1.35-1.45 (2H, m), 1.81-1.86 (1H, m), 2.69-2.75 (1H, t), 2.98-3.16 (4H, m), 4.04-4.13 (2H, m), 7.29-7.32 (1H, dd), 7.47-7.53 (1H, dd), 7.71-7.74 (1H, dd), 8.54-8.56 (1H, d), 8.93-8.96 (1H, d). | | 132 | 369 | 8.69 | 1.10-1.15 (6H, dd), 1.65 (3H, s), 1.69-1.73 (1H, m), 1.84-1.95 (2H, m), 3.45-3.66 (4H, m), 3.86-3.88 (1H d), 4.06-4.08 (1H, m), 7.31-7.34 (1H, dd), 7.61-7.66 (1H, dd), 7.85-7.88 (1H, dd), 8.56-8.58 (1H, d), 8.90-8.92 (1H, d). | | 133 | 439.09 | 3.67 | 3.28-3.33 (m, 1H), 3.44 (d, J = 11.2 Hz, 3H), 4.53-4.58 (m, 1H), 4.68 (m, 2H), 7.19-7.24 (m, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.1 Hz, 2H), 8.08 (d, J = 9.1 Hz, 1H), 8.38 (dd, J = 1.3, 8.1 Hz, 1H), 8.58 (dd, J = 1.5, 4.5 Hz, 1H), 9.24 (NH) and 14.04 (NH) ppm | | 134 | 439.09 | 3.67 | 1H NMR (400.0 MHz, DMSO) d 2.33 (t, J = 1.9 Hz, 3H), 3.28-3.34 (m, 1H), 3.43-3.49 (m, 3H), 4.52-4.57 (m, 1H), 4.70 (m, 2H), 7.18-7.25 (m, 2H), 7.30 (d, J = 7.0 Hz, 1H), 7.37-7.44 (m, 3H), 8.09 (d, J = 9.1 Hz, 1H), 8.39 (dd, J = 1.3, 8.1 Hz, 1H), 8.58 (dd, J = 1.6, 4.4 Hz, 1H), 9.29 (NH) and | | 135 | 335.05 | 2.87 | 14.04 (NH) ppm 1H NMR (400.0 MHz, DMSO) d 4.11 (dd, J = 4.5, 9.5 Hz, 2H), 4.21 (s, 1H), 4.42 (dd, J = 7.6, 9.1 Hz, 2H), 6.67 (d, J = 8.8 Hz, 1H), 7.30 (dd, J = 4.4, 8.2 Hz, 1H), 8.02 (d, J = 8.9 Hz, 1H), 8.36 (NH), 8.49 (dd, J = 1.3, 8.1 Hz, 1H), 8.60 (dd, J = 1.5, 4.5 Hz, 1H) and 14.04 (NH) ppm | | 136 | 339 | 6.35 | 1H NMR (CD3OD) 1.34-1.37 (6H, d), 2.73-2.78 (2H, m), 2.94-2.98 (2H, m), 3.21-3.24 (1H, m), 4.26-4.28 (1H, m), 4.65-4.67 (1H, m). 6.82-6.84 (1H, d), 7.28-7.31 (1H, dd), 7.53-7.54 (1H, d), 7.65-7.69 (1H, t), 8.54-8.55 (1H, d), 8.99-9.01 (1H, d). | | 137 | 419.13 | 3.3 | 1H NMR (400.0 MHz, DMSO) d 0.82 (d, 6H), 1.01-1.08 (m, 1H), 1.14-1.22 (m, 1H), 1.56-1.67 (m, 4H), 3.04-3.06 (m, 1H), 3.35 (masked signal, 1H), 3.54-3.60 (m, 1H), 3.86 (br m, 2H), 6.96 (d, 1H), 7.27 (dd, 1H), 7.90 (d, 1H), 8.40 (dd, 1H) and 8.59 (dd, 1H) ppm | | 138 | 419.13 | 3.3 | 1H NMR (400.0 MHz, DMSO) d 0.81 (d, 6H), 1.01-1.08 (m, 1H), 1.13-1.22 (m, 1H), 1.55-1.67 (m, 4H), 3.04-3.06 (m, 1H), 3.35 (masked signal, 1 H), 3.54-3.61 (m, 1H), 3.84-3.86 (m, 2H), 6.97 (d, 1H), 7.27 (dd, 1H), 7.90 (d, 1H), 8.40 (dd, 1H) and 8.59 (dd, 1H) ppm | | 139 | 351 | 8.65 | 8.40 (dd, 1H) and 8.39 (dd, 1H) ppm 1H NMR (CD3OD) 1.09 (9H, s), 1.50-1.55 (1H, d), 1.75-1.80 (1H, dd), 3.120-3.20 (1H, dd), 3.32-3.52 (4H, m), 4.37-3.40 (1H, m), 4.80-4.85 (1H, d), 6.93-6.95 (1H d), 7.28-7.31 (1H, | | | | | TABLE 2 continued | |------|----------------|-------------|--| | No. | M + 1
(obs) | RT
(min) | 1H-NMR | | | | | dd), 7.64-7.66 (1H, d), 7.76-7.78 (1H, t), 8.56-8.58 (1H, d), | | 140 | 410 | 0.45 | 8.88-8.90 (1H, d).
1H NMR (CD3OD) 0.92 (9H, s), 1.50-1.51 (1H, d), | | 140 | 419 | 9.45 | 1.60-1.65 (1H, dd), 3.12-3.20 (1H, dd), 3.32-3.50 (4H, m), 4.40-3.45 (1H, | | | | | m), 4.85-4.90 (1H, d; masked), 7.08-7.10 (1H d), | | | | | 7.27-7.30 (1H, dd), 8.06-8.08 (1H, d), 8.37-8.39 (1H, d), 8.57-8.58 (1H, d). | | 141 | 385 | 8.97 | 1H NMR (CD3OD) 0.98 (9H, s), 1.40150 (1H, m), | | | | | 1.58-1.68 (1H, m), 3.00-3.10 (1H, m), 3.30-3.50 (4H, m),
4.35-4.40 (1H, m), 4.75-4.80 (1H, m), 7.02-7.04 (1H, d), 7.28-7.31 (1H, | | 142 | 369 | 8.48 | dd), 7.83-7.85 (1H, d), 8.44-8.47 (1H, d), 8.58-8.60 (1H, d).
1H NMR (CD3OD) 1.05 (9H, s), 1.40-1.50 (1H, m), | | 142 | 309 | 0.40 | 1.58-1.68 (1H, m), 3.05-3.15 (1H, m), 3.30-3.50 (4H, m), | | | | | 4.35-4.40 (1H, m), 4.75-4.80 (1H, m), 7.02-7.05 (1H, d), 7.30-7.33 (1H, dd), 7.65-7.68 (1H, t), 8.60-8.61 (1H, d), 8.71 (1H, d). | | 143 | 373 | 3.5 | (d6-DMSO, 400 MHz) 0.83-0.85 (1H, m), 1.02 (6H, d), | | | | | 2.82-3.10 (5H, brm), 4.15 (1H, brs), 4.63 (1H, brs), 6.90 (1H, s), 7.27 (1H, dd), 7.49 (1H, d), 7.69 (1H, t), 8.57 (1H, d), | | | | | 8.78 (1H, d), 13.86 (1H, s) | | 144 | 352.15 | 3.63 | 1H NMR (400.0 MHz, DMSO) d 0.87 (dd, 6H), 1.18 (heptet, 1H), 1.28 (heptet, 1H), 1.69-1.79 (m, 4H), 3.14 (dd, 1H), | | | | | 3.35-3.45 (masked signal, 1H), 3.82-3.84 (m, 1H), 3.92 (dt, 1H), | | | | | 4.00 (dd, 1H), 4.62 (d, 1H), 6.83 (d, 1H), 7.28 (dd, 1H), 7.40 (d, 1H), 7.62 (dd, 1H), 8.56 (dd, 1H), 8.81 (dd, 1H) and | | 1.45 | 252.15 | 2.6 | 13.82 (br s, 1H) ppm | | 145 | 352.15 | 3.6 | 1H NMR (400.0 MHz, DMSO) d 0.83 (d, 3H), 0.93 (d, 3H), 1.02-1.09 (m, 1H), 1.38-1.51 (m, 2H), 1.57-1.63 (m, 1H), | | | | | 1.78-1.87 (m, 1H), 1.89-1.93 (m, 1H), 2.63 (dd, 1H), | | | | | 2.99-3.06 (m, 1H), 3.24-3.34 (m, 1H), 4.19 (d, 1H), 4.52 (d, 1H), 4.65 (d, 1H), 6.84 (d, 1H), 7.27 (dd, 1H), 7.42 (d, 1H), | | | | | 7.63 (dd, 1H), 8.57 (dd, 1H), 8.81 (dd, 1H) and 13.83 (br s, 1H) ppm | | 146 | 354.12 | 8.4 | 1H NMR (400.0 MHz, MeOH) d 9.03 (dd, J = 1.6, 8.1 Hz, 1H), | | | | | 8.46 (dd, J = 1.6, 4.6 Hz, 1H), 8.06 (d, J = 8.1 Hz, 1H), 7.82 (t, J = 7.9 Hz, 1H), 7.48 (d, J = 7.5 Hz, 1H), 7.25 (dd, J = 4.6, 8.1 Hz, | | | | | 1H), 3.06-3.01 (m, 3H), 2.48-2.34 (m, 1H), | | | | | 2.00-1.85 (m, 3H), 1.67 (qn, $J = 6.8$ Hz, 1H), 1.36 (dd, $J = 6.9$, 13.7 Hz, 1H), 1.22 (q, $J = 6.9$ Hz, 1H) and 0.86 (dd, $J = 1.7$, 6.6 Hz, 6H) | | 147 | 339 | 7.67 | ppm
1H NMR (dmso-d6) 1.22 (3H, t), 3.12-3.32 (3H, m), | | 147 | 339 | 7.07 | 3.43-3.46 (1H, d), 3.53-3.73 (5H, m), 4.44-4.49 (2H, m), | | | | | 6.97-6.99 (1H, d), 7.29-7.32 (1H, d), 7.57-7.59 (1H, d), 7.76-7.78 (1H, t), 8.58-8.60 (1H, d), 8.77-8.79 (1H, d), 8.86-8.88 (1H, br d), | | | | | 9.10-9.13 (1H, br d), 13.91 (1H, br s). | | 148 | 341 | 8.19 | 1H NMR (dmso-d6) 1.53-1.55 (3H, d), 1.58-1.61 (3H, d), 3.05-3.11 (1H, t), 3.24-3.30 (2H, d), 3.44-3.47 (1H, d), | | | | | 3.60-3.66 (1H, m), 4.49-4.55 (1H, d), 4.72-4.76 (1H, d), | | | | | 7.03-7.05 (1H, d), 7.25-7.30 (1H, dd), 7.58-7.60 (1H, d), 7.76-7.80 (1H, t), 8.58-8.60 (1H, d), 8.79-8.81 (1H, d), 8.90-9.20 (2H, br m). | | 149 | 385.11 | 3.12 | 1H NMR (400.0 MHz, DMSO) d 0.83 (d, 6H), 1.04-1.12 (m, 1H), 1.14-1.23 (m, 1H), 1.56-1.69 (m, 4H), 3.03-3.04 (m, | | | | | 1H), 3.17-3.34 (masked signal, 1H), 3.49 (masked signal, | | | | | 1H), 3.73-3.78 (m, 2H), 6.91 (d, 1H), 7.27 (dd, 1H), 7.69 (d, 1H), 8.50 (dd, 1H) and 8.58 (dd, 1H) ppm | | 150 | 441 | 3.63 | (d6-DMSO, 400 MHz) 0.78 (3H, d), 0.98 (3H, d), | | | | | 2.29-2.37 (1H, m), 3.19-3.24 (1H, m), 4.13 (1H, brs), 5.54 (1H, d), 4.90 (1H, d), 7.23 (1H, d), 7.30 (H, dd), 8.12 (1H, d), 8.42 (1H, dd), | | 151 | 272 | 7.0 | 8.61 (1H, dd), 9.53 (1H, brs), 14.05 (1H, s) | | 151 | 373 | 7.8 | 1H NMR (CD3OD) 1.49-1.57 (6H, dd), 2.04-2.21 (2H, m), 3.06-3.09 (1H, dd), 3.26-3.41 (1H, m), 3.51-3.55 (1H, m), | | | | | 3.75-3.82 (1H, m), 4.44-4.47 (1H, d), 4.68-4.72 (1H, d), 7.03-7.06 (1H, d), 7.31-7.34 (1H, dd), 7.65-7.70 (1H, t), | | | | | 8.59-8.61 (1H, d), 8.73-8.76 (1H, d) | | 152 | 369 | 7.85 | 1H NMR (CD3OD) 0.91-0.96 (6H, dd), 1.18-1.24 (1H, m), 1.31-1.37 (1H, m), 3.15-3.18 (1H, m), 3.25-3.50 (2H, m), | | | | | 3.50-3.73 (4H, m), 6.89-6.91 (1H, d), 7.30-7.33 (1H, dd), | | 153 | 311 | 5.82 | 7.51-7.56 (1H, t), 8.58-8.60 (1H, d), 8.82-8.85 (1H, d)
1H NMR (CD3OD) 3.25-3.43 (3H, m), 3.50358 (2H, m), | | | | | 3.80-3.84 (1H, m), 3.92-3.96 (1H, dd), 4.56-4.59 (2H, d), | | | | | 6.98-7.00 (1H, d), 7.33-7.36 (1H, dd), 7.66-7.68 (1H, d), 7.75-7.80 (1H, t), 8.57-8.58 (1H, d), 8.90-8.93 (1H, d) | | 154 | 367 | 7.39 | 1H NMR (CD3OD) 0.93-1.03 (6H, m), 1.76-1.85 (4H, m), 3.80-3.84 (1H, m), 3.17-3.53 (6H, m), 4.50-4.53 (1H, d), | | | | | 6.96-6.99 (1H, d), 7.31-7.34 (1H, dd), 7.64-7.66 (1H, d), | | 155 | 377 | 3.04 | 7.75-7.80 (1H, t), 8.58-8.60 (1H, d), 8.91-8.93 (1H, d) (d6-DMSO, 400 MHz) 1.76 (3H, t), 2.23-2.42 (2H, m), | | 100 | 311 | 5.04 | 3.10 (1H, dd), 3.15-3.27 (2H, m), 4.24 (1H, d), 4.63 (1H, d), | | | | | | | | | | TABLE 2-continued | |------|--------|-------|--| | | M + 1 | RT | | | No. | (obs) | (min) | 1H-NMR | | | | | 7.02 (1H, dd), 7.27 (1H, dd), 7.78 (1H, t), 8.60 (1H, dd), 8.65 (1H, | | | | | d), 9.02-9.07 (2H, brs), 14.04 (1H, s) | | 156 | 373 | 2.16 | (CD3OD) 0.60-0.90 (4H, m), 1.1-1.30 (2H, m), 2.55-2.60 (1H, | | | | | m), 3.00-3.3.30 (2H, m), 3.85-3.90 (1H, m), 4.05-4.10 (1H, m), 7.21-7.24 91H, d), 7.48-7.53 (1H, dd), 8.47-8.48 (1H, d), | | | | | 8.69-8.71 (1H, d). | | 157 | 277.98 | 6.12 | 1H NMR (400.0 MHz, MeOH) d 9.06 (dd, J = 1.6, 8.1 Hz, 1H), | | | | | 8.56 (dd, J = 1.5, 4.6 Hz, 1H), 8.08 (d, J = 7.8 Hz, 1H), 7.84 (t, | | | | | J = 7.8 Hz, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.37-7.33 (m, 1H),
6.87 (dd, J = 1.8, 4.8 Hz, 1H), 3.62 (dd, J = 2.6, 5.6 Hz, 2H), | | | | | 3.17 (t, J = 5.8 Hz, 2H) and 2.82-2.80 (m, 2H) ppm | | 158 | 433.19 | 3.35 | 1H NMR (400.0 MHz, DMSO) d 0.70 (d, 3H), 0.87 (d, 3H), | | | | | 0.95 (s, 3H), 1.10-1.23 (m, 2H), 1.47-1.55 (m, 1H),
1.61-1.74 (m, 2H), 2.70 (dd, 1H), 2.95 (d, 1H), 3.35 (masked signal, | | | | | 1.01-1.74 (iii, 2H), 2.70 (dd, 1H), 2.93 (d, 1H), 3.33 (masked signal, 1H), 4.02 (d, 1H), 4.11-4.15 (m, 1H), 6.98 (d, 1H), 7.30 (dd, | | | | | 1H), 7.91 (d, 1H), 8.39 (dd, 1H) and 8.59 (dd, 1H) ppm | | 159 | 279.99 | 5.89 | 1H NMR (400.0 MHz, MeOH) d 9.17 (dd, J = 1.6, 8.1 Hz, 1H), | | | | | 8.56 (dd, J = 1.6, 4.6 Hz, 1H), 8.05 (dd, J = 0.6, 7.9 Hz, 1H),
7.84-7.80 (m, 1H), 7.35 (dd, J = 4.6, 8.1 Hz, 1H), 7.28 (d, J = 7.5 Hz, | | | | | 1H), 3.28-3.24 (m, 2H), 3.05-2.97 (m, 1H), | | | | | 2.90-2.83 (m, 2H) and 2.05-1.96 (m, 4H) ppm | | 160 | 353 | 6.78 | 1H (MeOD)
1.00-1.04 (3H, t), 1.18-1.29 (3H, m),
1.67-1.76 (2H, m), 2.74-2.81 (2H, m), 2.94-2.99 (2H, m), 3.20-3.25 (1H, | | | | | m), 3.50-3.55 (1H, m), 4.20-4.30 (1H, m), 4.60-4.75 (1H, m), | | | | | 6.82-6.84 (1H, d), 7.28-7.33 (1H, m), 7.53-7.55 (1H, d), | | 161 | 271 | 6.67 | 7.65-7.70 (1H, d), 8.54-8.56 (1H, d), 8.97-9.04 (1H, m). | | 161 | 371 | 6.67 | 1H (MeOD) 0.97-1.02 (3H, t), 1.18-1.27 (3H, m), 1.60-1.72 (2H, m), 2.72-2.82 (2H, m), 2.92-2.96 (2H, m), 3.20-3.23 (1H, | | | | | m), 3.48-3.53 (1H, m), 4.20-4.30 (1H, m), 4.60-4.75 (1H, m), | | | | | 6.89-6.892 (1H, d), 7.30-7.34 (1H, m), 7.53-7.55 (1H, d), | | 162 | 335 | 7.6 | 8.58-8.60 (1H, d), 8.83-8.88 (1H, m).
1H (MeOD) 0.00 (2H, m), 0.43 (2H, m), 0.67-0.72 (1H, m), | | 102 | 333 | 7.0 | 1.19-1.35 (2H, m), 2.44-2.50 (1H, m), 2.71-2.85 (3H, m), | | | | | 2.93-2.96 (1H, m), 4.06-4.08 (1H, m), 4.38-4.41 (1H, m), | | | | | 6.63-6.65 (1H, d), 7.06-7.10 (1H, m), 7.33-7.35 (1H, d), | | 163 | 353 | 7.42 | 7.46-7.50 (1H, d), 8.34-8.35 (1H, d), 8.77-8.79 (1H, m).
1H (MeOD) 0.00 (2H, m), 0.37-0.41 (2H, m), 0.66-0.72 (1H, | | 100 | 555 | 7 | m), 1.21-1.35 (2H, m), 2.45-2.51 (1H, m), 2.71-2.85 (3H, m), | | | | | 2.93-2.96 (1H, m), 4.00-4.03 (1H, m), 4.27-4.31 (1H, m), | | | | | 6.73-6.76 (1H, d), 7.12-7.15 (1H, m), 7.37-7.42 (1H, d),
8.41-8.42 (1H, d), 8.65-8.67 (1H, m). | | 164 | 325 | 6.12 | 1H (MeOD) 1.41-1.43 (3H, d), 3.20-3.38 (4H, m), | | | | | 3.50-3.55 (1H, m), 4.10-4.20 (1H, m), 4.40-4.70 (1H, m), 4.88-4.93 (1H, | | | | | m), 6.97-6.99 (1H, d), 7.32-7.35 (1H, m), 7.64-7.66 (1H, d),
8.58-8.59 (1H, d), 8.95-8.98 (1H, m). | | 165 | 403.12 | 3.3 | 1H NMR (400.0 MHz, DMSO) d 0.00 (dd, J = 1.3, 4.8 Hz, 2H), | | | | | 0.33-0.37 (m, 2H), 0.71 (m, 1H), 1.17 (d, J = 6.9 Hz, 1H), | | | | | 1.30 (m, 1H), 2.64-2.67 (m, 3H), 2.93 (m, 2H), 4.04 (NH),
4.16 (m, 1H), 4.47 (m, 1H), 6.91 (d, J = 9.1 Hz, 1H), 7.20 (dd, | | | | | J = 4.5, 8.0 Hz, 1H), 7.89 (d, J = 9.1 Hz, 1H), 8.37 (dd, J = 1.5, | | | | | 8.0 Hz, 1H), 8.52 (dd, J = 1.4, 4.5 Hz, 1H) and 13.91 (NH) | | 100 | 205.05 | 2.20 | ppm | | 166 | 295.05 | 2.38 | 1H NMR (400.0 MHz, CDCl3/MeOD) d 3.11 (dd, J = 5.2, 10.9 Hz, 2H), 3.53 (s, 2H), 3.98 (t, J = 5.5 Hz, 2H), 7.08 (dd, J = 4.8, | | | | | 8.1 Hz, 1H), 7.62 (dd, J = 7.6, 10.8 Hz, 2H), 7.86 (d, J = 7.2 Hz, | | | | | 1H), 8.34 (d, $J = 4.3$ Hz, 1H) and 8.67 (d, $J = 7.9$ Hz, | | 167 | 391 | 3.45 | 1H) ppm
(d6-DMSO, 400 MHz) 0.98 (3H, d), 1.04 (3H, d), 3.14 (1H, t), | | 107 | 371 | 5.45 | 3.25-3.32 (2H, m), 4.14 (1H, brs), 4.42 (1H, d), 4.74 (1H, d), | | | | | 7.17 (1H, d), 7.30 (1H, dd), 7.80 (1H, t), 8.61-8.64 (2H, m), | | | | | 9.53 (2H, brs), 14.05 (1H, s) some piperazine signals masked | | 168 | 351.12 | 8.02 | by DMSO
1H NMR (400.0 MHz, MeOH) d 8.90 (dd, J = 1.5, 8.1 Hz, 1H), | | 100 | 001112 | 0.02 | 8.51 (dd, J = 1.5, 4.6 Hz, 1H), 7.59-7.55 (m, 1H), 7.45 (d, J = 7.4 Hz, | | | | | 1H), 7.22 (dd, $J = 4.6$, 8.0 Hz, 1H), 6.72 (d, $J = 8.5$ Hz, | | | | | 1H), 3.71-3.55 (m, 4H), 3.08 (dd, J = 3.7, 10.2 Hz, 1H), 1.92-1.69 (m, 4H), 1.32-1.25 (m, 1H), 1.19-1.12 (m, 1H) and | | | | | 0.90 (dd, J = 6.6, 17.3 Hz, 6H) ppm | | 169 | 351.16 | 8.02 | 1H NMR (400.0 MHz, MeOH) d 8.93 (dd, J = 1.5, 8.0 Hz, 1H), | | | | | 8.53 (dd, J = 1.5, 4.6 Hz, 1H), 7.62-7.58 (m, 1H), 7.46 (d, J = 7.4 Hz, | | | | | 1H), 7.25 (dd, J = 4.6, 8.0 Hz, 1H), 6.76 (d, J = 8.5 Hz, 1H), 3.75-3.57 (m, 4H), 3.11 (dd, J = 3.8, 10.4 Hz, 1H), | | | | | 1.93-1.71 (m, 4H), 1.34-1.27 (m, 1H), 1.20-1.14 (m, 1H) and | | 4.50 | 450.05 | 2.72 | 0.91 (dd, J = 6.6, 18.4 Hz, 6H) ppm | | 170 | 459.05 | 3.72 | 1H NMR (400.0 MHz, DMSO) d 2.82 (dd, J = 12.4, 23.1 Hz, 2H), 3.04-3.12 (m, 2H), 3.84 (dd, J = 2.3, 10.3 Hz, 1H), | | | | | 4.35 (d, J = 12.4 Hz, 1H), 4.48 (d, J = 12.0 Hz, 1H), 7.05 (d, J = 9.1 Hz, | | | | | | | | | | TABLE 2 continued | |-----|----------------|-------------|---| | No. | M + 1
(obs) | RT
(min) | 1H-NMR | | | | | 1H), 7.24 (dd, J = 4.5, 8.0 Hz, 1H), 7.31-7.47 (m, 3H), | | | | | 7.57 (s, 1H), 7.95 (d, J = 9.2 Hz, 1H), 8.42 (dd, J = 1.5, 8.1 Hz, | | | | | 1H), 8.56 (dd, J = 1.4, 4.5 Hz, 1H) and 13.98 (NH) ppm | | 171 | 443.04 | 3.57 | 1H NMR (400.0 MHz, DMSO) d 2.82 (m, 2H), 3.09 (m, 2H), | | | | | 3.77 (m, 1H), 4.45 (m, 2H), 7.02 (d, J = 9.1 Hz, 1H), 7.20 (t, J = 8.9 Hz, 3H), 7.53 (dd, J = 5.7, 8.6 Hz, 2H), 7.93 (d, J = 9.2 Hz, | | | | | 1H), 8.39 (dd, J = 1.5, 8.0 Hz, 2H), 7.93 (d, J = 9.2 Hz, 1H), 8.39 (dd, J = 1.5, 8.0 Hz, 1H), 8.54 (s, 1H) and | | | | | 13.95 (NH) ppm | | 172 | 504.95 | 3.77 | 1H NMR (400.0 MHz, DMSO) d 2.81 (m, 2H), 2.99 (NH), | | | | | 3.01 (m, 2H), 3.81 (m, 1H), 4.34 (m, 1H), 4.51 (m, 1H), 7.33 (m, 1H), 7.35 (d, J = 7.8 Hz, 1H), 7.43 (m, 1H), 7.48-7.51 (m, | | | | | 2H), 7.71 (s, 1H), 7.94 (d, J = 9.1 Hz, 1H), 8.41-8.43 (m, 1H), | | | | | 8.50 (m, 1H) and 13.95 (NH) ppm | | 173 | 459.01 | 3.73 | 1H NMR (400.0 MHz, DMSO) d 2.79-2.82 (m, 2H), | | | | | 3.01 (NH), 3.09 (m, 2H), 3.80 (m, 1H), 4.31 (m, 1H), 4.48 (m, 1H), 7.04 (d, J = 9.1 Hz, 1H), 7.25 (dd, J = 4.4, 8.1 Hz, 1H), | | | | | 7.43 (dd, $J = 1.7$, 6.8 Hz, 2H), 7.52 (d, $J = 8.5$ Hz, 2H), 7.95 (d, $J = 9.1$ Hz, | | | | | 1H), 8.40 (dd, J = 1.6, 8.1 Hz, 1H), 8.56 (dd, J = 1.4, | | 174 | 373 | 7.62 | 4.4 Hz, 1H) and 13.94 (NH) ppm | | 175 | 373 | 7.65 | | | 176 | 339 | 6.3 | | | 177 | 367 | 710 | 1H (CD3OD) 0.98-1.06 (6H, dd), 1.21 (3H, s), 2.06-2.09 (1H, | | | | | m), 2.84-2.96 (4H, m), 3.22-3.24 (1H, m), 4.20-4.22 (1H, m), 4.79-4.87 (2H, masked), 6.82-6.84 (1H, d), 7.29-7.32 (1H, | | | | | dd), 7.53-7.55 (1H, d), 7.65-7.69 (1H, dd), 8.55-8.56 (1H, d), | | | | | 9.00-9.03 (1H, d). | | 178 | 367 | 7.45 | 1H (CD3OD) 0.99-1.01 (6H, dd), 1.25 (3H, s), 2.05-2.07 (1H, | | | | | m), 2.76-2.81 (1H, m), 2.91-2.98 (3H, m), 3.23-3.25 (1H, m), 3.34-3.37 (1H, masked), 4.20-4.22 (1H, m), 4.68-4.71 (1H, m), | | | | | 6.82-6.84 (1H, d), 7.27-7.30 (1H, dd), 7.53-7.55 (1H, d), | | 4=0 | | | 7.66-7.70 (1H, dd), 8.55-8.56 (1H, d), 8.97-8.99 (1H, d). | | 179 | 385 | 6.99 | 1H (CD3OD) 0.94-1.02 (6H, dd), 1.19 (3H, s), 2.00-2.05 (1H, m), 2.78-2.94 (4H, m), 3.19-3.21 (1H, m), 3.32-3.34 (1H, m), | | | | | 4.10-4.13 (1H, m), 4.63-4.68 (1H, m), 6.87-6.90 (1H, d), | | | | | 7.29-7.32 (1H, dd), 7.53-7.57 (1H, d), 8.55-8.58 (1H, d), | | 180 | 385 | 7.25 | 8.85-8.87 (1H, d).
1H (CD3OD) 0.96-1.00 (6H, dd), 1.19 (3H, s), 1.99-2.03 (1H, | | 160 | 363 | 1.23 | m), 2.73-2.78 (1H, m), 2.91 (3H, m), 3.21-3.23 (1H, m), | | | | | 4.11-4.13 (1H, m), 4.52-4.55 (1H, m), 6.88-6.91 (1H, d), | | | | | 7.28-7.31 (1H, dd), 7.53-7.58 (1H, t), 8.58-8.59 (1H, d), 8.81-8.84 (1H, | | 181 | 353 | 7.52 | d).
1H (CD3OD) 1.30-1.33 (6H, d), 2.73-2.98 (4H, m), | | | | | 3.18-3.21 (1H, m), 3.30-3.37 (3H, masked), 4.22-4.25 (1H, d), | | | | | 4.61-4.64 (1H, d), 6.81-6.83 (1H, d), 7.27-7.30 (1H, dd), | | 182 | 369.08 | 7.93 | 7.52-7.54 (1H, d), 7.65-7.69 (1H, t), 8.54-8.55 (1H, d), 8.97-8.99 (1H, d).
1H NMR (400.0 MHz, MeOH) d 8.61 (dd, J = 1.3, 8.2 Hz, 1H), | | | | | 8.52 (dd, J = 1.5, 4.5 Hz, 1H), 8.42 (s, 1H), 7.57 (t, J = 9.5 Hz, | | | | | 1H), 7.24 (dd, J = 4.6, 8.3 Hz, 1H), 6.98 (dd, J = 2.6, 9.2 Hz, | | | | | 1H), 4.69 (dt, J = 12.5, 3.5 Hz, 1H), 4.40 (dt, J = 13.9, 3.9 Hz, 1H), 3.43-3.30 (m, 2H), 2.90-2.75 (m, 2H), 1.82 (td, J = 6.5, | | | | | 2.9 Hz, 1H), 1.60-1.53 (m, 1H), 1.49-1.42 (m, 1H), 1.34 (d, | | | | | J = 6.5 Hz, 3H) and 0.97-0.85 (m, 6H) ppm | | 183 | 369.11 | 7.87 | 1H NMR (400.0 MHz, MeOH) d 8.80 (dd, J = 1.4, 8.1 Hz, 1H),
8.59 (dd, J = 1.5, 4.5 Hz, 1H), 7.54 (t, J = 9.6 Hz, 1H), | | | | | 7.31 (dd, J = 4.6, 8.1 Hz, 1H), 6.88 (dd, J = 2.5, 9.2 Hz, 1H), | | | | | 3.78-3.68 (m, 2H), 3.43 (q, J = 6.3 Hz, 2H), 3.34-3.27 (m, 1H), | | | | | 3.23-3.15 (m, 1H), 1.78 (qn, J = 6.8 Hz, 1H), 1.55-1.39 (m, 2H), 1.25 1.21 (m, 2H), and 1.08 0.87 (m, 6H) many | | 184 | 325 | 7.07 | 2H), 1.25-1.21 (m, 3H) and 1.08-0.87 (m, 6H) ppm
1H (DMSO-d6) 2.50 (3H, s), 2.62-2.65 (1H, dd), | | 10. | 323 | ,, | 2.75-2.76 (1H, m), 2.89-2.93 (2H, m), 3.01-3.04 (1H, m), 3.34-3.38 (2H, | | | | | masked), 4.13-4.16 (1H, m), 4.33-4.37 (1H, m), 6.80-6.82 (1H, | | | | | d), 7.27-7.30 (1H, dd), 7.45-7.46 (1H, d), 7.63-7.67 (1H, m), | | 185 | 343 | 7.05 | 8.55-8.56 (1H, d), 8.81-8.83 (1H, d).
1H (DMSO-d6) 2.50 (3H, s), 2.59-2.62 (1H, dd), | | 103 | 545 | 7.03 | 2.75-2.76 (1H, m), 2.89-2.93 (2H, m), 3.01-3.04 (1H, m), 3.34-3.38 (2H, | | | | | masked), 4.02-4.04 (1H, m), 4.22 (1H, m), 6.89-6.91 (1H, d), | | | | | 7.28-7.31 (1H, dd), 7.62-7.67 (1H, m), 8.55-8.59 (1H, d), | | 104 | 327 | 614 | 8.69-8.72 (1H, d).
1H (DMSO-d6) 0.53-0.64 (4H m) 2.47-2.55 (2H masked) | | 186 | 337 | 0.14 | 1H (DMSO-d6) 0.53-0.64 (4H, m), 2.47-2.55 (2H, masked), 2.70-2.86 (3H, m), 3.04-3.07 (1H, m), 4.19-4.22 (1H, dd), | | | | | 4.48-4.51 (1H, dd), 6.77-6.79 (1H, d), 7.22-7.25 (1H, d), | | | | | 7.39-7.45 (1H, d), 7.61-7.65 (1H, m), 8.52-8.53 (1H, d), | | 107 | 221 | 705 | 8.82-8.85 (1H, d). | | 187 | 321 | 7.05 | 1H (CD3OD) 1.92-2.05 (4H, m), 2.12-2.16 (2H, m), 2.94-2.96 (2H, m), 3.34 (1H, m), 3.60-3.63 (2H, dd), 3.69 (1H, s), | | | | | (,, : (,), vivv vivv (ax), viv/ (xx), v/) | | No. | M + 1
(obs) | RT
(min) | 1H-NMR | |-----|-----------------|---------------------
--| | 188 | 339 | 7.55 | 6.84-6.86 (1H, d), 7.31-7.34 (1H, dd), 7.52-7.54 (1H, d), 7.65-7.69 (1H, m), 8.55-8.56 (1H, d), 8.97-9.00 (1H, d). 1H (CD3OD) 1.92-2.05 (4H, m), 2.12-2.16 (2H, m), | | 189 | 365.13 | 3.13 | 2.94-2.96 (2H, m), 3.34 (1H, m), 3.60-3.63 (2H, dd), 3.69 (1H, s), 6.91-6.94 (1H, d), 7.32-7.35 (1H, dd), 7.53-7.58 (1H, d), 8.58-8.59 (1H, d), 8.81-8.84 (1H, d). 1H NMR (400.0 MHz, DMSO) d 0.70 (d, 3H), 0.93 (d, 3H), | | | | | 1.01 (dd, 1H), 1.13 (s, 3H), 1.44 (dd, 1H), 1.76-1.91 (m, 3H), 2.78 (d, 1H), 3.01-3.08 (m, 1H), 3.12 (dd, 1H), 4.33 (d, 2H), 6.89 (d, 1H), 7.32 (dd, 1H), 7.47 (d, 1H), 7.67 (t, 1H), 7.84 (s, 2H), 8.58 (dd, 1H), 8.82 (dd, 1H) and 13.87 (br s, 1H) ppm | | 190 | 371 | 7.3 | 1H (CD3OD) 1.28-1.31 (6H, d), 3.00-3.10 (1H, m), 3.15 3.30 (6H, masked), 4.35-4.45 (1H, m), 4.65-4.70 (1H, m), 6.95-6.98 (1H, dd), 7.26-7.30 (1H, dd), 7.52-7.57 (1H, m), 8.50 (1H, s), 8.78-8.80 (1H, d), | | 191 | 348 | 6.9 | 1H (CD3OD) 2.98-3.00 (4H, d), 3.62-3.64 (4H, d), 6.91-6.93 (1H, d), 6.97-6.99 (1H, d), 7.57-7.59 (1H, d), 7.68-7.72 (1H, m), 8.78-8.79 (1H, d), | | | 355 | 7.85 | | | | 405 | 9.07 | ANATHON (100 O NOT) O DOING CONT LO CO (TO | | | 363.01 | 2.9 | 1H NMR (400.0 MHz, CDCl3/MeOH) d 3.20 (m, 2H), 3.66 (m, 2H), 4.00 (s, 2H), 6.51 (d, 1H), 6.97 (m, 1H), 7.69 (d, 1H), 8.08 (d, 1H), 8.24 (s, 1H) ppm | | 195 | 435 | 3.15 | (d6-DMSO, 400 MHz) 0.63 (3H, d), 0.90 (3H, d), 1.12 (1H, dd), 1.32 (1H, dd), 1.62-1.72 (1H, m), 1.74-1.82 (1H, m), 1.83-1.96 (1H, m), 2.90 (1H, d), 3.09-3.17 (2H, m), 4.32 (1H, d), 4.60 (1H, d), 5.20 (1H, brs), 7.05 (1H, d), 7.30 (1H, dd), | | 196 | 385 | 8.05 | 7.98-8.02 (4H, m), 8.39 (1H, dd), 8.60 (1H, dd), 14.00 (1H, s)
1H (CD3OD) 1.04-1.09 (6H, m), 1.50-1.55 (1H, m),
1.60-1.65 (1H, m), 1.99-2.02 (1H, m), 3.11-3.15 (1H, m),
3.30-3.46 (3H, masked), 3.70-3.76 (2H, m), 4.46-4.50 (2H, m),
6.97-7.00 (1H, dd), 7.32-7.35 (1H, dd), 7.58-7.63 (1H, t), 8.60-8.61 (1H, | | 197 | 355 | 8 | d), 8.68-8.70 (1H, m), 1H (CD3OD) 1.09 (9H, s), 2.55-2.60 (1H, m), 2.70-2.80 (1H, m), 2.95-2.98 (2H, m), 3.25-3.28 (1H, m), 4.20-4.25 (1H, m), 4.50-4.55 (1H, m), 6.90-6.95 (1H, dd), 7.29-7.32 (1H, dd), | | 198 | 438 | 3.72 | 7.53-7.57 (1H, dd), 8.58-8.59 (1H, d), 8.88-8.90 (1H, d). 0.88 (6H, dd), 1.45-1.70 (3H, m), 1.90-1.98 (2H, m), 3.36-3.47 (2H, m), 3.79 (1H, d), 4.08 (1H, d), 4.38 (1H, brs), 7.02 (1H, d), 7.28 (1H, dd), 7.92 (1H, dd), 8.42 (1H, dd), 8.59 (1H, | | 199 | 388 | 3.54 | dd), 13.97 (1H, s)
(d6-DMSO, 400 MHz) 0.92 (6H, dd), 1.61-1.65 (3H, m),
1.95-1.98 (2H, m), 3.75-2.86 (2H, m), 4.08 (1H, dd), 6.94 (1H,
dd), 7.30 (1H, dd), 7.63 (1H, t), 8.58 (1H, dd), 8.70 (1H, d), | | 200 | 385 | 6.95 | 13.97 (1H, brs) | | | 385 | 6.97 | | | | 419.06 | 9.05 | $ \begin{array}{l} 1 \text{H NMR } (400.0 \text{ MHz}, \text{MeOH}) \text{ d } 8.45 \text{ (dd, J} = 1.5, 4.6 \text{ Hz}, 1 \text{H}), \\ 8.29 \text{ (dd, J} = 1.5, 8.1 \text{ Hz}, 1 \text{H}), 7.81 \text{ (d, J} = 9.2 \text{ Hz}, 1 \text{H}), \\ 7.16 \text{ (dd, J} = 4.6, 8.1 \text{ Hz}, 1 \text{H}), 6.81 \text{ (d, J} = 9.1 \text{ Hz}, 1 \text{H}), 4.46 \text{ (d, J} = 12.6 \text{ Hz}, \\ 1 \text{H}), 4.22 \text{ (d, J} = 12.3 \text{ Hz}, 1 \text{H}), 3.25 \text{ (s, 1 H}), \\ 2.81 \text{ -} 2.71 \text{ (m, 2H)}, 2.51 \text{ -} 2.37 \text{ (m, 2H)}, 1.65 \text{ (q, J} = 6.7 \text{ Hz}, 1 \text{H}), \\ 1.23 \text{ (t, J} = 7.0 \text{ Hz}, 2 \text{H}), 1.05 \text{ (d, J} = 6.4 \text{ Hz}, 3 \text{H}) \text{ and } 0.82 \text{ (t, J} = 6.1 \text{ Hz}, \\ \end{array} $ | | 203 | 419.06 | 8.87 | 6H) ppm 1H NMR (400.0 MHz, MeOH) d 8.46 (dd, J = 1.4, 4.6 Hz, 1H), 8.27 (dd, J = 1.4, 8.1 Hz, 1H), 7.81 (d, J = 9.1 Hz, 1H), 7.18 (dd, J = 4.6, 8.1 Hz, 1H), 6.81 (d, J = 9.1 Hz, 1H), 3.78-3.72 (m, 2H), 3.45 (dd, J = 6.3, 13.2 Hz, 1H), 3.31 (q, J = 6.5 Hz, 1H), 3.14 (td, J = 6.5, 3.4 Hz, 1H), 3.05 (dd, J = 3.4, 7.3 Hz, 1H), 1.58 (qn, J = 6.8 Hz, 1H), 1.36-1.17 (m, 3H), 1.07 (d, J = 6.5 Hz, 3H) and 0.84-0.76 (m, 6H) ppm | | 204 | 385 | 7.03 | out out out out phin | | 205 | 385 | 7.03 | | | | 381 | 8.15 | | | 207 | 439 | 9 | 1H NMR (MeOD): 1.06-1.31 (6H, m), 2.36-2.43 (1H, m)<, 2.86-2.97 (2H, m), 3.12-3.15 (1H, m), 3.23-3.43 (2H, m), 4.05-4.07 (1H, m), 4.69-4.72 (1H, m), 6.90-6.93 (1H, dd), 7.28-7.31 (1H, dd), 7.56-7.61 (1H, t), 8.58-8.60 (1H, d), 8.84-8.86 (1H, d). | | 208 | 439 | 9.15 | 1H NMR (MeOD): 1.06-1.31 (6H, m), 2.36-2.43 (1H, m)<, 2.86-2.97 (2H, m), 3.12-3.15 (1H, m), 3.23-3.43 (2H, m), 4.05-4.07 (1H, m), 4.69-4.72 (1H, m), 6.90-6.93 (1H, dd), 7.28-7.31 (1H, dd), 7.56-7.61 (1H, t), 8.58-8.60 (1H, d), 8.84-8.86 (1H, | | 209 | 406.05 | 2.75 | d) | | 210 | 420.05
434.1 | 2.73
2.82
2.9 | | | No. | M + 1
(obs) | RT
(min) | 1H-NMR | |------------|------------------|--------------|--| | 212 | 434.09 | 2.92 | | | 213 | 392.03 | 2.84 | | | 214
215 | 406.03
420.09 | 2.93
2.95 | | | 216 | 420.03 | 3.04 | | | 217 | 437.02 | 3.73 | H NMR (400.0 MHz, MeOH) d 0.96 (dd, J = 5.6, 6.2 Hz, 6H), | | | | | $\begin{aligned} 1.39 &\text{ (t, J = 7.0 Hz, 2H), 1.79 (qn, J = 6.7 Hz, 1H),} \\ 2.56-2.62 &\text{ (m, 1H), 2.76-2.82 (m, 1H), 2.87-2.93 (m, 1H),} \\ 3.12-3.19 &\text{ (m, 1H), 4.43 (dd, J = 1.9, 5.1 Hz, 1H), 4.55 (dd, J = 1.8, 5.1 Hz, 3H), 6.98 (d, J = 9.1 Hz, 1H), 7.29 (dd, J = 4.6, 8.1 Hz, 1H), 7.97 (d, J = 9.1 Hz, 1H), 8.42 (dd, J = 1.4, 8.1 Hz, 1H) \\ \text{and } 8.58 &\text{ (dd, J = 1.4, 4.5 Hz, 1H) ppm} \end{aligned}$ | | 218 | 435.04 | 8.05 | H NMR (400.0 MHz, MeOH) d 8.45 (dd, J = 1.5, 4.6 Hz, 1H), 8.34 (dd, J = 1.4, 8.1 Hz, 1H), 7.81 (d, J = 9.1 Hz, 1H), 7.18 (dd, J = 4.6, 8.1 Hz, 1H), 6.83 (d, J = 9.1 Hz, 1H), 4.31 (d, 1H), 4.04 (td, J = 8.6, 4.2 Hz, 1H), 3.25-3.16 (m, 1H), 2.94 (d, 1H), 2.72 (dd, J = 4.2, 9.9 Hz, 1H), 1.91-1.83 (m, 1H), 1.76 (td, J = 6.6, 3.9 Hz, 1H), 1.49-1.40 (m, 1H), 1.31-1.14 (m, | | 219 | 435.03 | 8.03 | 3H), 0.85-0.77 (m, 3H) and 0.66 (d, J = 6.6 Hz, 3H) ppm
H NMR (400.0 MHz, MeOH) d 8.45 (dd, J = 1.4, 4.6 Hz, 1H),
8.33 (dd, J = 1.4, 8.1 Hz, 1H), 7.81 (d, J = 9.1 Hz, 1H),
7.18 (dd, J = 4.6, 8.1 Hz, 1H), 6.84 (d, J = 9.1 Hz, 1H), 4.34 (d,
1H), 4.08 (t, J = 4.6 Hz, 1H), 3.22-3.15 (m, 1H), 2.93 (d, 1H),
2.75 (dd, J = 4.2, 10.0 Hz, 1H), 1.89-1.74 (m, 2H),
1.51-1.42 (m, 1H), 1.31-1.20 (m, 3H), 0.85 (d, J = 6.6 Hz, 3H) and
0.66-0.62 (m, 3H) ppm | | 220 | 339 | 2.67 | (/ /11 | | 221 | 407 | 8.2 | | | 222
223 | 454
440 | 9.78
9.52 | | | 223 | 419 | 8.19 | | | 225 | 387 | 2.42 | 1H NMr (CD3OD) 0.096-0.97 (6H, dd), 1.56-1.63 (1H, m), 1.69-1.76 (1H, m), 1.86-1.93 (1H, m), 3.55-3.70 (2H, m), 3.85-4.10 (3H, m), 4.80-4.95 (2H, masked), 6.94-6.96 (1H, d), 7.31-7.34 (1H, d), 7.62-7.64 (1H, d), 7.77-7.81 (1H, t), 8.57-8.59 (1H, d), 8.87-8.89 (1H, d). | | 226 | 313 | 7.52 | (, -, -, -, -, -, -, -, -, -, -, -, -, | | 227 | 373 | 9.4 | | | 228
229 | 337
399 | 7.14
8.27 | 1H NMR (MeOD) 0.80-0.85 (1H, d), 0.96-1.06 (5H, m), | | | | 0.27 | 1.25-1.28 (3H, d), 2.02-2.16 (1H, m), 3.07 (2H, s), 3.26 (1H, s), 3.42-3.78 (5H, m), 3.90-4.30 (2H, m), 6.80-6.83 (0.7H, m), 7.04-7.07 (0.3H, m), 7.30-7.33 (1H, m), 7.65-7.69 (1H, t), 8.60-8.62 (1H, d), 8.74-8.76 (1H, m). | | 230 | 371 | 6.28 | 1H NMR (MeOD) 2.70-2.95 (2H, m), 3.00-3.30 (3H, masked), 4.05-4.10 (1H, m), 4.35-4.55 (2H, m), 4.65-4.90 (3H, masked), 6.82-6.85 (1H, d), 7.18-7.21 (1H, dd), 7.44-7.48 (1H, t), 8.45-8.47 (1H, d), 8.71-8.73 (1H, d). | | 231 | 399 | 8.19 | 1H (CD3OD) 1.01-1.04 (6H, d), 1.31-1.34 (3H, d), 1.90-1.95 (1H, m), 3.12-3.21 (3H, m), 3.50-4.10 (6H, m), 4.60-4.70 (1H, m), 6.86-7.10 (1H, m), 7.30-7.34 (1H, d), 7.65-7.69 (1H, t), 8.60-8.61 (1H, d), 8.73-8.75 (1H, d). | | 232 | 353 | 6.45 | 1H NMR (CD3OD): 3.10-3.20 (1H, m), 3.30-3.33 (1H, masked), 3.40-3.60 (2H, m), 3.65-3.68 (1H, dd), 3.79-3.82 (1H, d), 3.89-3.97 (2H, m), 4.20-4.24 (1H, dd), 4.37-4.42 (2H, m), 6.92-6.94 (1H, d), 7.32-7.35 (1H, dd), 7.49-7.51 (1H, d), 7.68-7.72 (1H, dd), 8.35 (1H, s), 8.55-8.57 (1H, d), | | 233 | 420 | 7.32 | 8.90-8.92 (1H, d). 1H NMR (CD30D): 2.96-3.01 (1H, m), 3.17-3.36 (2H, m), 3.54-3.57 (1H, dd), 3.68-3.80 (3H, m), 4.21-4.25 (1H, dd), 4.29-4.33 (1H, dd), 4.51-4.55 (1H, m), 7.07-7.10 (1H, dd), 7.29-7.32 (1H, d), 7.92-7.95 (1H, d), 8.38-8.40 (1H, d), 8.57-8.58 (1H, d). | | 234 | 305 | 6.05 | 1H NMR (MeOD): 2.39-2.55 (4H, m), 3.19-3.32 (2H, m), 3.37-3.52 (2H, m), 7.22-7.26 (1H, dd), 7.54-7.56 (1H, d), 7.87-7.93 (1H, t), 8.16-8.18 (1H, d), 8.36 (1H, s, HCOOH), 8.46-8.47 (1H, d), 9.01-9.03 (1H, d). | | 235 | 337 | 8.14 | 1H (CD3OD) 1.02-1.04 (6H, d), 1.43-1.47 (2H, m), 1.86-1.91 (1H, m) 2.65-2.71 (1H, m), 2.96-3.06 (2H, m), 3.18-3.22 (1H, m), 4.28-4.31 (1H, d), 4.5354 (1H, d), 6.84-6.86 (1H, d), 7.28-7.30 (1H, d), 7.55-7.56 (1H, d), 7.67-7.71 (1H, m), | | 236 | 435 | 8.07 | 8.55-8.57 (1H, d), 8.93-8.95 (1H,
d),
1H mmR (MeOD) 0.64-0.65 (3H, d), 0.95-0.96 (3H, d),
1.14 (3H. s), 1.90-1.94 (1H, m), 3.19-3.45 (5H, m), 4.51-4.55 (1H, m), 5.12-5.15 (1H, m), 7.11-7.13 (1H, d), 7.29-7.32 (1H, d),
8.06-8.08 (1H, d), 8.39-8.42 (1H, d), 8.8.59-8.61 (1H, d). | | | | | 17 IDDE 2 Continued | |------------|----------------|--------------|--| | No. | M + 1
(obs) | RT
(min) | 1H-NMR | | 237 | 435 | 8.28 | 1H nmR (MeOD) 0.64-0.65 (3H, d), 0.95-0.96 (3H, d), | | | | | 1.14 (3H. s), 1.90-1.94 (1H, m), 3.19-3.45 (5H, m), 4.51-4.55 (1H, m), 5.12-5.15 (1H, m), 7.11-7.13 (1H, d), 7.29-7.32 (1H, d), | | | | | 8.06-8.08 (1H, d), 8.39-8.42 (1H, d), 8.8.59-8.61 (1H, d). | | 238 | 369 | 8.15 | 1H NMR (CD3OD) 0.88-1.10 (9H, m), 1.45-1.65 (1H, m), | | | | | 1.71-1.88 (1H, m), 3.09-3.12 (1H, m), 3.30-3.56 (4H, m), | | | | | 4.43-4.47 (1H, m), 4.73-4.88 (1H, m), 7.04-7.07 (1H, dd), | | | | | 7.31-7.34 (1H, dd), 7.65-7.69 (1H, m), 8.60-8.62 (1H, d), 8.70-8.74 (1H, m) | | 239 | 399 | 8.37 | 1H NMR (CD3OD) 0.95-1.07 (6H, m), 1.31-1.39 (4H, m), | | | | | 3.24-3.51 (8H, m), 4.40-445 (1H, m), 4.85-4.93 (1H, masked), | | | | | 7.03-7.06 (1H, d), 7.31-7.34 (1H, dd), 7.65-7.69 (1H, m),
8.60-8.62 (1H, d), 8.68-8.71 (1H, m) | | 240 | 369 | 6.42 | 1.63-1.75 (1H, m), 1.87-1.97 (1H, m), 2.05-2.15 (2H, m), | | | | | 2.35-2.43 (2H, m), 2.77-2.98 (4H, m), 3.17-3.24 (1H, m), | | | | | 4.12-4.17 (1H, m), 4.50-4.53 (1H, m), 6.89-6.92 (1H, d), 7.27-7.31 (1H, | | 241 | 371 | 6.6 | d), 7.53-7.58 (1H, t), 8.56-8.58 (1H, d), 8.83-8.85 (1H, d). | | 242 | 371 | 6.65 | 1H (CDCl3) 0.90-0.95 (3H, m), 1.20-1.25 (4H, m), | | | | | 2.66-2.77 (2H, m), 2.85-2.95 (2H, m), 3.11-3.20 (1H, m), 3.99-4.02 (1H, | | | | | m), 4.31-4.34 (1H, m), 6.61-6.64 (1H, dd), 7.14-7.21 (1H, masked), 7.37-7.45 (1H, m), 8.53-8.54 (1H, d), 8.75-8.77 (1H, | | | | | d). | | 243 | 371 | 6.65 | | | 244
245 | 371
383 | 6.59
2.75 | 1H (dmso-d6) 1.45-1.80 (8H, m), 2.00210 (1H, m), | | 243 | 363 | 2.13 | 2.60-2.78 (3h, m), 3.05-3.10 (1H, m), 4.04-4.06 (1H, d), 4.22 (1H, | | | | | s), 4.38-4.40 (1H, d), 6.88-6.91 (1H, d), 7.25-7.28 (1H, d), | | 246 | 407 | 7.55 | 7.62-7.66 (1H, m), 8.58-8.60 (1H, d), 8.75-8.7 (1H, d).
1H NMR (CD3OD) 1.20-1.30 (3H, m), 1.51-1.85 (3H, m), | | 240 | 407 | 1.55 | 2.75-3.06 (4H, m), 3.20-3.25 (1H, masked), 4.03-4.05 (1H, m), | | | | | 4.56-4.59 (1H, m), 6.76-6.79 (1H, d), 7.19-7.23 (1H, dd), | | 2.47 | 202 | | 7.42-7.47 (1H, t), 8.45-8.46 (1H, d), 8.80-8.82 (1H, d). | | 247 | 383 | 6.99 | 1H NMR (CD3OD) 0.28-0.35 (3H, m), 0.44-0.48 (1H, m), 0.94-0.96 (1H, m), 1.11-1.14 (3H, m), 2.75-2.91 (4H, m), | | | | | 3.14-3.20 (1H, masked), 4.10-4.14 (1H, m), 4.54-4.57 (1H, m), | | | | | 6.79-6.83 (1H, m), 7.15-7.25 (1.5H, m), 7.43-7.48 (1H, m), | | 248 | 402 | 7.39 | 7.81-7.83 (0.5H, m), 8.44-8.46 (1H, d), 8.70-8.73 (1H, d).
1H NMR (CD3OD) 1.23 (3H, s), 1.32-1.42 (6H, dd), | | 270 | 702 | 7.55 | 2.70-2.97 (4H, m), 3.03-3.06 (1H, d), 4.04-4.06 (1H, m), | | | | | 4.60-4.63 (1H, d), 6.75-6.78 (1H, d), 7.20-7.23 (1H, d), 7.42-7.46 (1H, t), | | 249 | 402 | 7.34 | 8.45-8.46 (1H, d), 8.80-8.82 91H, d).
1H NMR (CD3OD) 1.23 (3H, s), 1.32-1.42 (6H, dd), | | 247 | 402 | 7.54 | 2.70-2.97 (4H, m), 3.03-3.06 (1H, d), 4.04-4.06 (1H, m), | | | | | 4.60-4.63 (1H, d), 6.75-6.78 (1H, d), 7.20-7.23 (1H, d), 7.42-7.46 (1H, t), | | 250 | 402 | 7.43 | 8.45-8.46 (1H, d), 8.80-8.82 91H, d).
1H NMR (CD3OD) 1.23 (3H, s), 1.32-1.42 (6H, dd), | | 250 | 402 | 7.43 | 2.70-2.97 (4H, m), 3.03-3.06 (1H, d), 4.04-4.06 (1H, m), | | | | | 4.60-4.63 (1H, d), 6.75-6.78 (1H, d), 7.20-7.23 (1H, d), 7.42-7.46 (1H, t), | | 251 | 254 | 6.20 | 8.45-8.46 (1H, d), 8.80-8.82 91H, d). | | 251 | 354 | 6.28 | 1H NMR (CD3OD) 0.79-1.02 (4H, m), 2.97-3.00 (1H, m), 3.29-3.51 (3H, masked), 4.50-4.52 (1H, m), 4.67-4.71 (1H, | | | | | m), 7.06-7.09 (1H, d), 7.34-7.37 (1H, d), 7.64-7.69 (1H, t), | | 252 | 271 | 7.07 | 8.61-8.62 (1H, d), 8.73-8.75 (1H, d). | | 252 | 371 | 7.07 | 1H NMR (MeOD) 0.99-1.04 (6H, d), 1.89-1.94 (1H, m), 2.79-3.01 (4H, m), 3.17-3.19 (1H, m), 4.13-4.15 (1H, m), | | | | | 4.58-4.61 (1H, m), 6.89-6.92 (1H, d), 7.31-7.34 (1H, d), 7.54-7.59 (1H, | | | | | t), 8.57-8.59 (1H, d), 8.85-8.87 (1H, d). | | 253 | 371 | 7.15 | 1H NMR (MeOD) 0.96-1.05 (6H, dd), 1.89-1.94 (1H, m), 2.79-3.01 (4H, m), 3.17-3.19 (1H, m), 4.08-4.11 (1H, m), | | | | | 4.35-4.38 (1H, m), 6.89-6.92 (1H, d), 7.28-7.31 (1H, d), | | | | | 7.54-7.59 (1H, t), 8.57-8.59 (1H, d), 8.79-8.81 (1H, d). | | 254 | 403 | 7.52 | | | 255 | 313 | 6.68 | 1H (dmso-d6) 3.34 (2H, masked), 3.85-8.88 (2H, m), | | | | | 4.10-4.13 (1H, m), 6.90-6.93 (1H, d), 7.30-7.34 (1H, d), 7.65-7.68 (1H, t), 8.18 (1H, s), 8.62-8.64 (1H, d), 8.75-8.77 (1H, d), | | | | | 14.0 (1H, s). | | 256 | 383 | 2.88 | (d6-DMSO, 400 MHz) 1.38 (3H, d), 1.54-1.59 (1H, m), | | | | | 1.74-1.80 (1H, m), 2.02-2.16 (2H, m), 2.30-2.36 (1H, m), | | | | | 2.42-2.49 (1H, m), 2.96-3.11 (2H, m), 3.46-3.56 (2H, m),
4.35 (1H, d), 4.64 (1H, d), 6.16 (1H, brs), 7.13 (1H, dd), 7.29 (1H, | | | | | dd), 7.77 (1H, t), 8.39-8.47 (1H, m), 8.53 (1H, brs), 8.61 (1H, | | | | | dd), 8.65 (1H, dd) | | 257 | | | 42.04 / 417 | | 258 | | | 13.94 (s, 1H), 8.55 (dd, 1H), 8.45 (dd, 1H), 7.89 (d, 1H), 7.24 (dd, 1H), 6.90 (d, 1H), 4.63 (br, 1H), 4.47 (d, 1H), 4.24 (d, 1H), | | | | | (us, 111), 0.00 (us, 111), 1.00 (us, 111), 1.71 (us, 111), 1.27 (us, 111), | | No. | M + 1
(obs) | RT
(min) | 1H-NMR | |------------|----------------|--------------|---| | 250 | | | 3.36 (dd, 1H), 3.26 (dd, 1H), 3.01 (m, 1H), 2.77 (dd, 1H), 1.71 (m, 3H), 1.44 (m, 1H), 1.21 (m, 1H) | | 259
260 | 379 | 2.72 | (d6-DMSO, 400 MHz) 2.15 (3H, s), 3.12-3.31 (4H, m),
4.28 (1H, d), 4.41 (1H, t), 4.51 (1H, d), 6.09 (1H, s), 7.01 (1H, dd),
7.13 (1H, dd), 7.63 (1H, t), 8.46 (1H, dd), 8.51 (1H, d),
9.12-9.17 (1H, m), 9.39 (1H, d), 12.75 (1H, s), 13.89 (1H, s) | | 261 | 433 | 3.32 | (11, d), 12.75 (11, s), 12.75 (11, s), 13.65 (11, s), 15.65 (11, s), 16.65 (11, d), 1.18 (6H, dd), 150 (1.58 (1H, m), 1.69 (1.74 (1H, m), 2.00 (2H, m), 2.16 (2.22 (1H, m), 2.38 (2.49 (1H, m), 3.38 (3.45 (1H, m), 3.55 (1H, t), 4.48 (1H, d), 4.80 (1H, d), 6.16 (1H, s), 7.20 (1H, d), 7.27 (1H, dd), 8.06 (1H, d), 8.45 (8.53 (2H, m), 8.60 (1H, dd), 14.05 (1H, s) | | 262 | 341 | 6.85 | 6.00 (111, d), 6.45-6.55 (211, III), 6.00 (111, dd), 14.05 (111, 8) | | 263 | 341 | 7.28 | 1H NMR (dmso-d6) 1.20 (3H, s), 1.25-1.35 (1H, m), 1.40-1.50 (1H, m), 1.80-1.95 (3H, m), 2.75-2.90 (2H, m), 3.20-3.25 (1H, m), 4.30 (2H, m), 6.97-7.00 (1H, dd), 7.30-7.33 (1H, dd), 7.68-7.73 (1H, t), 7.83 (1H, s), 8.60-8.68 (2H, m), | | 264 | 403 | 7.64 | 1H NMR (CD3OD) 0.82-0.89 (6H, dd), 1.01-1.29 (1H, m), 1.94-2.01 (1H, m), 3.04-3.42 (5H, m), 4.26-4.29 (1H, m), 4.51-4.62 (2H, d), 4.69-4.73 (1H, s), 6.92-6.95 (1H, m), 7.18-7.23 (1H, d), 7.52-7.57 (1H, t), 8.37 (2H, s), 8.48-8.49 (1H, d), 8.60-8.63 (1H, d). | | 265 | 419 | 8.64 | 1H NMR (MeOD): 0.72-0.74 (2H, d), 0.93-0.97 (6H, m), 1.63-2.12 (4H, m), 2.91-3.00 (2H, m), 3.10-3.34 (1H, m), 4.17-4.27 (1H, m), 4.51-4.66 (1H, m), 6.98-7.04 (1H, dd), 7.28-7.32 (1H, m), 7.95-7.99 (1H, dd), 3.32-3.39 (1H, m), 8.58-8.61 (1H, d). | | 266 | 298 | 9.53 | 1H NMR (MeOD): 1.73 (6H, s), 3.64 (4H, s), 6.87-6.90 (1H, dd), 7.31-7.34 (1H, m), 7.49-7.54 (1H, dd), 8.57-8.58 (1H, d), 8.80-8.82 (1H, d). | | 267 | 316 | 8.73 | 1H NMR (MeOD): 1.90-2.12 (4H, m), 3.62-3.67 (2H, m), 3.82-3.87 (2H, m), 4.80-4.97 (1H, masked), 6.93-6.96 (1H, dd), 7.30-7.35 (1H, m), 7.52-7.57 (1H, dd), 8.57-8.61 (1H, d), 8.77-8.79 (1H, d). | | 268 | 366 | 9.57 | 1H NMR (MeOD): 1.61-1.72 (2H, m), 2.05-2.10 (2H, m), 2.50-2.60 (1H, m), 2.94-3.01 (2H, m), 4.48-4.52 (2H, m), 6.93-6.96 (1H, m), 7.30-7.38 (1H, m), 7.53-7.58 (1H, dd), 8.57-8.61 (1H, d), 8.77-8.79 (1H, d). | | 269 | 385 | 2.84 | (d6-DMSO, 400 MHz) 0.70 (3H, d), 0.99 (3H, d), 1.11-1.18 (1H,
m), 1.46 (1H, dd), 1.75 (1H, td), 1.87-1.99 (3H, m), 2.75 (1H, d), 2.96 (1H, td), 3.10 (1H, brs), 4.20 (1H, d), 4.56 (1H, d), 5.20 (1H, s), 6.98 (1H, dd), 7.31 (1H, dd), 7.69 (1H, t), 7.97 (3H, brs), 8.61 (1H, dd), 8.70 (1H, dd), 14.01 (1H, s) | | 270 | 369 | 8.12 | 1H NMR (MeOD) 0.87-1.01 (6H, m), 1.45-1.55 (1H, m), 1.65-1.2.05 (4H, m), 2.45-2.50 (1H, m), 2.90-3.15 (2H, m), 4.18-4.21 (1H, d), 4.45-4.448 (1H, d), 6.92-6.95 (1H, d), 7.31-7.35 (1H, d), 7.53-7.57 (1H, m), 8.57-8.60 (1H, d), 8.78-8.80 (1H, d), 1.50-1.50 | | 271 | 383 | 6.82 | 1H NMR (MeOD) 0.10-0.25 (2H, m), 0.30-0.35 (1H, m), 0.80-90 (1H, m), 1.00 (3H, s), 2.62-2.64 (2H, m), 2.73-2.76 (2H, m), 2.99-3.01 (1H, m), 3.95-4.00 (1H, d), 4.40-4.45 (1H, d), 6.66-6.69 (1H, d), 7.04-7.07 (1H, d), 7.30-7.35 (1H, m), 8.32-8.34 (1H, d), 8.60-8.64 (1H, d). | | 272 | 383 | 6.78 | 1H NMR (MeOD) 0.30-0.35 (2H, m), 0.40-0.45 (1H, m), 0.9095 (1H, m), 1.13 (3H, s), 2.69-2.79 (2H, m), 2.88-2.90 (2H, m), 3.13-3.15 (1H, m), 4.08-4.10 (1H, d), 4.53-4.56 (1H, d), 6.80-6.83 (1H, d), 7.16-7.19 (1H, d), 7.44-7.49 (1H, m), 8.46-8.474 (1H, d), 8.72-8.74 (1H, d). | | 273
274 | 383
419 | 6.84
7.78 | 1H (DMSO-d6) 1.58 (3H, s), 2.65-2.75 (2H, m), 2.80-2.85 (1H, m), 3.05-3.10 (1H, m), 3.95-4.00 (1H, dd), 4.25-4.30 (1H, dd), 5.20-5.35 (1H, br s), 6.80-6.83 (1H, d), 7.19-7.22 (1H, m), 7.29-7.356 (3H, m), 7.54-7.65 (3H, m), 8.19 (1H, s), 8.60-8.67 (2H, m), 13.96 (1H, s). | | 275 | 323 | 8.03 | 1H NMR (CD3OD) 1.90-1.99 (2H, m), 2.06-2.15 (2H, m), 3.05-3.11 (1H, m), 3.50-3.60 (2H, m), 3.90-4.00 (2H, m), 6.94-6.97 (1H, d), 7.33-7.36 (1H, d), 7.55-7.60 (1H, t), 8.56-8.59 (1H, d), 8.77-8.79 (1H, d). | | 276 | 419 | 7.77 | H NMR (CD3OD) 1.71 (3H, s), 3.02-3.10 (1H, dd), 3.12-3.2 (1H, m), 3.40-3.45 (1H, masked), 3.46-3.49 (1H, m), 3.63-3.66 (1H, d), 4.06-4.10 (1H, d), 4.39-4.42 (1H, d), 6.79-6.74 (1H, d), 7.21-7.37 (4H, m), 7.55-7.58 (3H, m), 8.38-8.41 (1H, d), 8.52 (1h, s), 8.58-8.60 (1H, d). | | 277 | 384 | 9.4 | (H, 96) 0.90-0.96 (1H, dd), 1.16 (3H, s), 1.52-1.53 (1H, m), 1.67-1.70 (1H, m), 1.83 (1H, m), 1.90-1.99 (3H, m), 2.86-2.99 (2H, m), 4.22-4.25 (1H, m), 4.55-4.58 (1H, m), | | No. | M + 1
(obs) | RT
(min) | 1H-NMR | |-----|----------------|-------------|--| | | (668) | (IIIII) | TH TOTAL | | 278 | 370 | 9.09 | 6.99-7.02 (1H, d), 7.35-7.38 (1H, d), 7.60-7.65 (1H, dd), 8.63-8.65 (1H, d), 8.89-8.91 (1H, d). 1H (MeOD) 0.95-0.98 (6H, d), 1.45-1.49 (1H, m), 1.67-1.70 (1H, m), 1.82-1.93 (3H, m), 2.02-2.05 (1H, m), 2.95-3.06 (2H, m), 3.19-3.22 (1H, m), 4.19-4.22 (1H, m), 4.27-4.32 (1H, m), 7.00-7.03 (1H, d), 7.37-7.39 (1H, d), 7.61-7.65 (1H, dd), | | | | | 8.64-8.65 (1H, d), 8.86-8.89 (1H, d). | | 279 | 370 | 9.52 | 111 N (D (OD2OD) 0.00 (21 × 1) 1.07 (211 1) 1.40 1.50 (111 | | 280 | 369 | 7.12 | 1H NMR (CD3OD) 0.90 (3h <d), (1h,="" (2h,="" (3h,="" 1.07="" 1.40-1.50="" 1.70-1.80="" 1.90-2.10="" 2.22-2.27="" 2.90-3.10="" 4.15-4.19="" 4.51-4.55="" 6.94-6.97="" 7.31-7.34="" 7.55-7.60="" 8.60-8.61="" 8.73-8.75="" d),="" d).<="" m),="" t),="" td=""></d),> | | 281 | 369 | 7.74 | 1H NMR (cd3od) 0.88-0.98 (6H, dd), 1.55-1.95 (5H, m), 2.02-2.12 (1H, m), 2.92-2.93 (1H, dd), 3.2103.35 (2H, masked), 3.73-3.79 (1H, m), 4.08-4.12 (1H, m), 6.84-6.87 (1H, d), 7.20-7.24 (1H, d), 7.48-7.52 (1H, d), 8.39 (1H, s), 8.47-8.50 (2H, d). | | 282 | 407 | 7.4 | | | 283 | 407 | 7.42 | 1H NMR (dmso-d6) 1.28 (2H, s), 1.60-1.75 (2H, t), 2.60-2.90 (4H, m), 3.10-3.15 (1H, m), 4.05-4.10 (1H, m), 4.55-4.60 (1H, m), 5.50 (1H, s), 6.85-6.90 (1H, d), 7.28-7.31 (1H, d), 7.65-7.70 (1H, d), 8.57-8.60 (1H, d), 8.78-8.80 (1H, d), 14.00 (1H, s). | | 284 | 369 | 3.12 | (d6-DMSO, 400 MHz) 0.97 (6H, dd), 1.26 (1H, s), 1.59 (2H, d), 1.71-1.97 (5H, m), 3.04 (1H, t), 3.22 (1H, d), 4.02 (1H, d), 4.09 (1H, d), 7.07 (1H, dd), 7.31 (1H, dd), 7.75 (1H, t), 7.92 (3h, brs), 8.61 (1H, dd), 8.70 (1H, dd), 14.03 (1h, s) | | 285 | 419 | 3.38 | (d6-DMSO, 400 MHz) 0.94 (6H, dd), 1.23 (1H, s), 1.54 (2H, d), 1.74-1.99 (5H, m), 3.19 (1H, t), 4.12 (1H, d), 4.20 (1H, d), 7.10 (1H, d), 7.88 (3H, brs), 8.03 (1H, d), 8.43 (1H, dd), 8.61 (1H, dd), 4.10 (1H, s) NMR also contains a singlet at 5.7 ppm - unknown origin | | 286 | 407 | 7.47 | 1H (MeOD) 1.39 (3H, s), 1.65-1.75 (3H, t), 2.68-2.74 (1H, t), 2.97-3.07 (2H, m), 3.15-3.50 (2H, masked), 4.07-4.09 (1H, d), 4.69-4.72 (1H, m), 6.87-6.90 (1H, d), 7.28-7.31 (1H, d), 7.54-7.59 (1H, t), 8.57-8.59 (1H, d), 8.87-8.90 (1H, d). | | 287 | 407 | 7.47 | | | 288 | 383 | 6.62 | 1H (CD3OD) 0.42-0.50 (2H, m), 0.87-1.05 (6H, m), 3.02-3.27 (5H, masked), 4.20-4.30 (1H, m), 4.20-4.30 (1H, m), 6.79-6.84 (1H, m), 7.09-7.12 (1H, d), 7.40-7.45 (1H, dd), 8.36-8.39 (1H, d), 8.50-8.53 (1H, d). | | 289 | 313 | 6.03 | 1H (CD3OD) 1.80-1.90 (1H, m), 2.20-2.30 (1H, m), 2.50-2.60 (1H, m), 2.82-2.84 (2H, d), 3.25-3.35 (1H, masked), 3.53-3.59 (1H, m), 3.68-3.78 (2H, m), 6.51-6.54 (1H, d), 7.30-7.33 (1H, d), 7.47-7.52 (1H, t), 8.56-8.57 (1H, d), 8.93-8.95 (1H, d). | | 290 | 339 | 7.85 | 1H (CD3OD) 1.50-1.60 (1H, m), 1.80-2.01 (3H, m), 2.21-2.28 (2H, m), 2.34-2.41 (1H, m).2.70-2.76 (1H, t), 3.05-3.23 (3H, m), 4.29-4.32 (1H, d), 4.41-4.44 (1H, d), 6.88-6.91 (1H, d), 7.30-7.33 (1H, d), 7.51-7.56 (1H, t), 8.56-8.58 (1H, d), 8.74-8.77 (1H, d). | | 291 | 355 | 6.85 | 1H (CD3OD) 0.98102 (3H, m), 1.40-1.55 (1H, m), 1.70-1.95 (6H, m), 2.87-2.493 (1H, t), 3.00-3.07 (1H, m), 3.13-3.18 (1H, m), 4.19-4.22 (1H, d), 4.51-4.54 (1H, d), 6.94-6.97 (1H, d), 7.32-7.35 (1H, d), 7.55-7.58 (1H, t), 8.60-8.61 (1H, d), 8.73-8.75 (1H, d). | | 292 | 383 | 8.55 | H (CD3OD) 1.06-1.09 (6H, m), 1.32-1.35 (3H, s),
1.50-1.70 (3H, m), 1.90-2.00 (1H, m), 2.95-3.05 (2H, m), 3.65-3.70 (1H, m), 4.26-4.28 (1H, m), 4.80-4.90 (2H, masked), 6.99-7.02 (1H, d), 7.33-7.36 (1H, d), 7.61-7.66 (1H, t), 8.59-8.62 (2H, m). | | 293 | 399.2 | 2.82 | H NMR (400.0 MHz, DMSO) d 0.71 (d, 3H), 0.92 (d, 3H), 1.20 (dd, 1H), 1.41 (dd, 1H), 1.74-1.80 (m, 1H), 1.82-1.91 (m, 2H), 2.80 (d, 1H), 2.91-2.98 (m, 1H), 3.45-3.51 (m, 2H), 3.68 (d, 1H), 4.18-4.26 (m, 2H), 6.98 (dd, 1H), 7.32 (dd, 1H), 7.67 (t, 1H), 7.85 (d, 3H), 8.60 (dd, 1H), 8.67 (dd, 1H) and 14.00 (br s 1H) ppm | | 294 | 313 | 2.52 | (d6-DMSO, 400 MHz) 1.57-1.67 (2H, m), 1.85-1.91 (1H, m), 1.99-2.02 (1H, m), 3.18-3.33 (3H, m), 3.81-3.85 (1H, m), 4.18 (1H, d), 6.98 (1H, dd), 7.32 (1H, dd), 7.72 (1H, t), 8.00 (3H, brs), 8.61 (1H, dd), 8.67 (1H, dd), 14.01 (1H, brs) | | 295 | 370.17 | 3.77 | 3H), 1.58-1.61 (m, 3H), 1.80 (11, day), 4.70 (11, day), 4.80 (| | 296 | 343 | 5.84 | 1H NMR (CD3OD) 1.61-1.71 (1H, m), 1.86-1.95 (1H, m), 2.02-2.08 (1H, m), 2.85-2.91 (1H, m), 2.97-3.02 (1H, m), | | No. | M + 1
(obs) | RT
(min) | 1H-NMR | |------------|----------------|--------------|--| | 297 | 343 | 6.02 | 3.07-3.14 (1H, m), 3.18-3.24 (1H, m), 3.32-3.37 (1H, m), 3.70-3.76 (1H, m), 4.30-4.33 (1H, m), 4.43-4.47 (1H, m), 6.98-7.01 (1H, d), 7.33-7.36 (1H, d), 7.57-7.62 (1H, dd), 8.60-8.61 (1H, d), 8.68-8.70 (1H, d). 1H NMR (CD3OD) 1.76-1.93 (2H, m), 2.25-2.31 (1H, m), 2.96-3.01 (1H, m), 3.21-3.26 (1H, m), 3.54-3.64 (2H, m), 3.84-3.90 (1H, m), 4.01-4.06 (1H, m), 4.13-4.17 (1H, m), | | 298 | 336 | 3.04 | (de-DMSO, 400 MHz) 2.81 (2H, t), 3.97 (2H, t), 4.66 (2H, s), | | 296 | 330 | 3.04 | (10-DMS), 400 MH2/2.81 (2H, t), 3.97 (2H, t), 4.00 (2H, s),
7.04 (1H, dd), 7.37 (1H, dd), 7.57 (1H, s), 7.67 (1H, dd),
8.60 (1H, dd), 8.70 (1H, dd), 13.98 (1H, brs) | | 299 | 383 | 7.82 | 1H NMR (CD3OD) 0.94-0.96 (6H, d), 1.51-1.55 (1H, m), 1.60-1.74 (3H, m), 1.92-1.98 (3H, m), 2.91-3.06 (2H, m), 3.25-3.35 (2H, masked), 4.20-4.23 (1H, d), 4.50-4.53 (1H, m), 6.94-6.97 (1H,
d), 7.32-7.35 91H, d), 7.56-7.61 (1H, t), 8.60-8.61 (1H, d), 8.70-8.72 (1H, d). | | 300 | 383 | 8.03 | 1H NMR (CD3OD) 0.94-1.02 (6H, dd), 1.50-1.80 (4H, m), 1.92-1.98 (3H, m), 3.25-3.35 (4H, masked), 4.00-4.05 (1H, d), 4.30-4.33 (1H, m), 6.96-6.99 (1H, d), 7.32-7.35 91H, d), 7.58-7.63 (1H, t), 8.60-8.61 (1H, d), 8.64-8.66 (1H, d). | | 301 | 403 | 8.37 | 1H NMR (CD3OD) 1.32-1.37 (1H, m), 1.54-1.57 (1H, m), 1.66-1.72 (1H, m), 1.79-1.90 (1H, m), 2.34-2.37 (1H, m), 3.60-3.66 1H, m), 3.70-3.75 (1H, m), 3.90-3.95 (1H, m), 4.12-4.17 (1H, d), 4.24-4.27 (1H, m), 7.03-7.06 (1H, d), 7.33-7.36 (1H, d), 7.47-7.50 (5H, m), 7.65-7.70 (1H, t), 8.54-8.56 (1H, d), 8.60-8.61 (1H, d). | | 302 | 341 | 6.95 | | | 303
304 | 369
341 | 7.57
6.6 | | | 305 | 355 | 7.37 | | | 306 | 370.15 | 3.02 | H NMR (400.0 MHz, DMSO) d 4.16-4.20 (m, 2H), 7.37 (dd, 1H), 7.63-7.68 (m, 2H), 8.22-8.32 (m, 5H), 8.53 (d, 1H), 8.58 (dd, 1H), 8.65 (dd, 1H) and 14.20 (s, 1H) ppm | | 307 | 383 | 7.74 | 1H NMR (CD3OD) 1.07 (9H, s), 1.40-1.50 (1H, m), 1.70-1.80 (1H, m), 1.85-2.00 (2H. m), 2.10-2.15 (1H, m), 3.85-3.95 (3H, m), 4.35-4.45 (2H, m), 6.96 (1H, d), 7.31-7.34 (1H, d), 8.59-8.60 (1H, t), 8.59-8.60 (1H, d), 8.72-8.74 (1H, m). | | 308 | 383 | 7.99 | 1H NMR (CD3OD) 1.04 (9H, s), 1.75-1.90 (4H, m), 2.10-2.15 (1H, m), 2.89 (1H, s), 3.00-3.20 (2H, m), 4.00-4.10 (1H, m), 4.72-4.78 (1H, m), 6.96-6.97 (1H, d), 7.31-7.34 (1H, d), 7.61 (1H, t), 8.59-8.64 (2H, m). | | 309 | 339 | 6.09 | 1H NMR (CD3OD) 1.90-2.00 (1H, m), 2.05-2.15 (1H, m), 2.68-2.84 (2H, m), 3.20-3.50 (4H, masked), 3.58-3.65 (2H, m), 3.71-3.79 (2H, m), 6.55-6.58 (1H, d), 7.31-7.34 (1H, d), 7.53-7.57 (1H, t), 8.58-8.59 (1H, d), 8.92-8.97 (1H, m). | | 310 | 355 | 6.8 | 1H NMR (CD3OD) 1.39-1.42 (6H, d), 1.47-1.51 (1H, m), 1.68-1.71 (1H, m), 1.81-1.87 (1H, m), 1.93-1.97 (1H, m), 2.75-2.81 (1H, dd), 2.91-2.98 (1H, m), 4.27-4.30 (1H, d), 4.69-4.73 (1H, m), 6.94-6.97 (1H, d), 7.31-7.35 (1H, d), 7.56-7.61 (1H, t), 8.60-8.61 (1H, d), 8.70-8.72 (1H, m). | | 311 | 433 | 3.06 | H NMR (400.0 MHz, DMSO) d 13.96 (s, 1H), 8.58 (dd, J = 1.5, 4.5 Hz, 1H), 8.39 (dd, J = 1.5, 8.1 Hz, 1H), 7.92 (d, J = 9.2 Hz, 1H), 7.82 (t, J = 6.2 Hz, 1H), 7.30 (dd, J = 4.5, 8.1 Hz, 1H), 6.99 (d, J = 9.1 Hz, 1H), 3.91-3.85 (m, 2H), 3.60-3.55 (m, 2H), 3.04 (d, J = 6.3 Hz, 2H), 1.84 (s, 3H), 1.52-1.28 (m, 4H) | | 312 | 339 | 6.24 | and 0.94 (s, 3H) ppm 1H NMR (CD30D) 2.11-2.27 (4H, m), 3.39-3.47 (2H, masked), 3.47-3.54 (2H, m), 3.67-3.73 (4H, m), 6.56-6.59 (1H, d), 7.31-7.34 (1H, d), 7.56-7.58 (1H, t), 8.58-8.60 (1H, d), 8.88-8.90 (1H, d). | | 313 | 327 | 6.45 | H NMR (CD3OD) 1.25-1.26 (1H, d), 2.25-2.29 (2H, m), 3.01-3.06 (1H, m), 3.28-3.32 (2H, m), 3.40-3.44 (1H, m), 3.88-3.91 (1H, m), 4.97-4.01 (1H, m), 6.55-6.57 (1H, d), 7.32-7.35 (1H, d), 7.55-7.57 (1H, t), 8.58-8.60 (1H, d), 8.87-8.90 (1H, d). | | 314 | 367 | 6.45 | | | 315
316 | 367
327 | 7.25
2.67 | (d6-DMSO, 400 MHz) 1.33 (3H, s), 1.67-1.86 (4H, m), 3.16-3.21 (1H, m), 3.33 (1H, d), 3.89 (1H, d), 7.03 (1H, dd), 7.34 (1H, dd), 7.74 (1H, t), 8.00 (3H, brs), 8.61 (1H, dd), 8.68 (1H, dd), 1.40 (1H, c) | | 317 | 397 | 8.27 | dd), 14.02 (1H, s) !H NMR (CD3OD) 0.96 (9H, s) 1.20-1.25 (1H, m), 1.35-1.45 (1H, m), 1.62-1.66 (3H, m), 1.90-2.00 (2H, m), 2.75-3.00 (3H, m), 4.30-4.35 (1H, m), 4.45-4.50 (1H, m), 6.92 (1H, d), 7.31-7.34 (1H, dd), 7.71-7.56 (1H, t), 8.58-8.59 (1H, d), 8.79-8.81 (1H, d). | | | M + 1 | RT | TABLE 2-continued | |-----|--------|-------|--| | No. | (obs) | (min) | 1H-NMR | | 318 | 397 | 8.42 | !H NMR (CD3OD) 0.96 (9H, s) 1.20-1.25 (1H, m), 1.35-1.45 (1H, m), 1.62-1.66 (3H, m), 1.90-2.00 (2H, m), 2.85-3.05 (3H, m), 4.20-4.25 (1H, m), 4.45-4.50 (1H, m), 6.92 (1H, d), 7.30-7.33 (1H, dd), 7.51-7.55 (1H, t), 8.57-8.59 (1H, d), 8.81-8.83 (1H, d). | | 319 | 377 | 3 | (d6-DMSO, 400 MHz) 1.26 (3H, s), 1.74-1.83 (4H, m), 3.36-3.40 (1H, m), 3.57 (1H, d), 4.01 (1H, d), 7.05 (1H, d), 7.31 (1H, dd), 7.94 (3H, brs), 8.01 (1H, d), 8.37 (1H, dd), 8.59 (1H, dd), 13.98 (1H, s) | | 320 | | | 13.91 (br, 1H), 8.55 (dd, 1H), 8.35 (dd, 1H), 7.89 (d, 1H), 7.27 (dd, 1H), 6.94 (d, 1H), 4.44 (d, 2H), 3.15 (d, 1H), 2.93 (t, 2H), 2.42 (m, 4H), 1.78 (m, 2H), 1.43-1.33 (m, 8H) | | 322 | 419 | 7.6 | | | 323 | 419 | 7.6 | | | 324 | 367 | 7.32 | NMR (CD3OD) 1.4050 (1H, m), 1.70-1.80 (1H, m), 1.9-2.25 (7H, m), 2.40-2.55 (2H, m), 2.70-2.80 (1H, m), 2.85-2.95 (1H, m), 4.20-4.30 (1H, m, 4.75-4.80 (1H, m), 6.96-6.99 (1H, d), 7.31-7.34 (1H, d), 7.57-7.62 (1H, t), 8.60-8.61 (1H, d), 8.74-8.76 (1H, d), | | 325 | 370 | 3.14 | H NMR (400.0 MHz, MeOH) d 8.75 (dd, J = 1.2, 8.1 Hz, 1H), 8.50 (dd, J = 1.4, 4.5 Hz, 1H), 7.44 (t, J = 9.7 Hz, 1H), 7.21 (dd, J = 4.6, 8.1 Hz, 1H), 6.81 (dd, J = 2.5, 9.2 Hz, 1H), 4.40-4.35 (m, 1H), 4.11 (dd, J = 1.7, 13.2 Hz, 1H), 3.30 (td, J = 9.6, 4.6 Hz, 1H), 3.03-2.96 (m, 1H), 2.58 (dd, J = 10.3, 13.3 Hz, 1H), 1.95-1.89 (m, 1H), 1.75-1.69 (m, 1H), 1.58-1.47 (m, | | 326 | 420 | 3.5 | 111), 1:30-1:30 (m, 1H), 1:31-1:37 (m, 1H), 1:30-1:47 (m, 3H), 1:30-1:37 1:30-1: | | 327 | 327 | 6.57 | 3.14 (dd, J = 2.6, 24.9 Hz, 1H), 2.72 (dd, J = 10.4, 13.3 Hz, 1H), 1.89 (dd, J = 3.7, 9.2 Hz, 1H), 1.67 (dd, J = 4.2, 10.2 Hz, 1H), 1.56-1.49 (m, 2H), 1.02-0.95 (m, 1H), 0.83 (d, J = 6.5 Hz, 3H) and 0.72 (d, J = 6.4 Hz, 3H) ppm 1H NMR (CD3OD) 1.50-1.60 (1H, m), 1.65-1.75 (1H, m), 1.80-1.90 (1H, m), 1.95-2.10 (2H, m), 2.90-3.05 (2H, m), 3.30-3.40 (2H, masked), 3.95-4.00 (1H, m), 4.10-4.15 (1H, m), 6.15 (1.70 (1H, dd), 7.32 (2.33 (1H, d), 7.55 (2.70 (1H, dd)), 7.32 (2.33 (1H, d), 7.55 (2.70 (1H, dd)), 7.32 (2.33 (1H, d), 7.55 (2.70 (1H, dd)), 7.32 (2.33 (1H, d), 7.33 (1H | | 328 | 385 | 7.52 | m), 6.95-7.00 (1H, d), 7.32-7.35 (1H, d), 7.65-7.70 (1H, dd), 8.65-8.70 (2H, m). 1H NMR (CD3OD) 0.97-0.97 (3H, d), 1.08-1.09 (1H, d), 1.24 (3H, s), 2.02-2.06 (1H, m), 3.30-3.45 (2H, masked), 3.49-3.63 (3H, m), 4.37-4.40 (1H, m), 4.52-4.56 (1H, m), 7.31-7.34 (1H, d), 7.60-7.66 (1H, dd), 7.83-7.85 (1H, d), 8.57-8.59 (1H, d), | | 329 | 385 | 7.84 | 8.88-8.90 (1H, d). 1H NMR (CD3OD) 1.01-1.04 (6H, d), 1.30 (3H, s), 1.89-1.93 (1H, m), 3.18-3.24 (1H, dd), 3.38-3.45 (2H, m), 3.54-3.62 (2H, m), 4.434-4.40 (2H, m), 7.30-7.33 (1H, d), 7.58-7.36 (1H, dd), | | 330 | 383 | 7.74 | 7.80-7.83 (1H, d), 8.56-8.57 (1H, d), 8.85-8.87 (1H, d). 1H NMR (MeOD) 0.99 (9H, s), 1.30-135 (1H, m), 1.50-1.60 (1H, m), 1.70-1.80 (1H, m), 1.90-2.05 (2H, m), 2.40-2.45 (1H, m), 2.85-3.00 (2H, m), 4.25-4.35 (2H, m), 6.88-6.91 (1H, d), 7.30-7.33 (1H, dd), 7.52-7.57 (12H, t), 8.58-8.59 (1H, d), | | 331 | 383 | 7.74 | 8.80-8.82 (1H, d). 1H NMR (MeOD) 0.99 (9H, s), 1.50-1.55 (1H, m), 1.65-1.75 (1H, m), 1.85-2.10 (3H, m), 2.45-2.50 (1H, m), 2.85-3.00 (2H, m), 4.25-4.35 (2H, m), 6.89-6.92 (1H, d), 7.30-7.33 (1H, dd), | | 332 | 377 | 3 | 7.52-7.57 (12H, t), 8.58-8.59 (1H, d), 8.80-8.82 (1H, d). (d6-DMSO, 400 MHz) 1.23 (3H, d), 2.18 (2H, brs), 2.88 (1H, brs), 3.07-3.17 (3H, brm), 3.34 (2H, m), 6.58 (1H, s), 7.29 (1H, dd), 7.81 (3H, brs), 7.97 (1H, d), 8.49 (1H, d), 8.59 (1H, | | 333 | 404 | 4.47 | dd), 13.95 (1H, s) H NMR (400.0 MHz, DMSO) d 13.97 (s, 1H), 8.59 (dd, J = 1.5, 4.5 Hz, 1H), 8.39 (dd, J = 1.5, 8.1 Hz, 1H), 7.91 (d, J = 9.2 Hz, 1H), 7.26 (dd, J = 4.5, 8.0 Hz, 1H), 6.97 (d, J = 9.1 Hz, 1H), | | 334 | 354 | 4.22 | 4.44 (d, J = 12.3 Hz, 1H), 4.29 (d, J = 12.9 Hz, 1H), 3.03-2.96 (m, 1H), 2.63 (dd, J = 10.8, 12.9 Hz, 1H), 1.90-1.30 (m, 5H), 1.19-1.03 (m, 3H) and 0.83-0.80 (m, 6H) ppm H NMR (400.0 MHz, DMSO) d 13.97 (brs, 1H), 8.69 (dd, J = 1.5, 8.1 Hz, 1H), 8.59 (dd, J = 1.6, 4.4 Hz, 1H), 7.62 (dd, J = 9.3, 10.1 Hz, 1H), 7.29 (dd, J = 4.5, 8.1 Hz, 1H), 6.92 (dd, J = 2.5, 9.3 Hz, 1H), 4.34-4.31 (m, 1H), 4.17 (d, J = 12.7 Hz, 1H), 4.34-4.31 (m, 1H), 4.17 (d, J = 12.7 Hz, 1 | | 335 | 302.17 | 2.77 | 1H), 2.90 (td, J = 12.4, 5.0 Hz, 1H), 2.59-2.50 (m, 1H), 1.88-1.46 (m, 5H), 1.29-1.08 (m, 3H) and 0.89-0.84 (m, 6H) ppm H NMR (400.0 MHz, DMSO) d 3.90 (s, 2H), 7.40 (dd, 1H), 7.47 (d, 1H), 7.54 (t, 1H), 7.97 (dd, 1H), 8.04 (t, 1H), 8.09
(d, | | | | | TABLE 2-continued | |-----|----------------|-------------|--| | No. | M + 1
(obs) | RT
(min) | 1H-NMR | | | | | 1H), 8.16 (dd, 1H), 8.21 (s, 1H), 8.62 (dd, 1H) and 9.05 (dd, 1H) ppm | | 336 | 379.1 | 2.79 | H NMR (400.0 MHz, DMSO) d 2.62-2.80 (m, 3H), 3.02-3.08 (m, 1H), 3.34-3.42 (m, 3H), 3.54-3.60 (m, 1H), 3.99 (d, J = 9.7 Hz, 1H), 4.24 (d, J = 12.7 Hz, 1H), 4.37 (d, J = 12.7 Hz, 1H), 7.02 (d, J = 9.1 Hz, 1H), 7.30 (dd, J = 4.5, 8.0 Hz, 1H), | | 337 | 429 | 3.83 | 8.00 (d, J = 9.1 Hz, 1H), 8.43 (d, J = 7.8 Hz, 1H) and 8.58 (d, J = 3.5 Hz, 1H) ppm
H NMR (400.0 MHz, DMSO) d 13.99 (s, 1H), 8.59 (dd, J = 1.6, 4.4 Hz, 1H), 8.40 (dd, J = 1.6, 8.1 Hz, 1H), 7.97 (d, J = 9.1 Hz, | | | | | 1H), 7.28 (dd, J = 4.5, 8.1 Hz, 1H), 7.06 (d, J = 9.1 Hz, 1H),
4.39-4.20 (m, 2H), 3.38-3.16 (m, 2H), 2.89 (dd, J = 10.9,
13.6 Hz, 1H), 1.99-1.84 (m, 3H), 1.68 (qn, J = 6.7 Hz, 1H), | | 338 | 341.19 | 3.1 | 1.31-1.19 (m, 2H) and 0.83 (dd, J = 6.5, 10.4 Hz, 6H) ppm
H NMR (400.0 MHz, DMSO) d 0.97 (t, 3H), 1.40-1.45 (m,
3H), 1.49-1.55 (m, 1H), 2.63-2.68 (m, 1H), 3.31 (t, 1H),
3.72 (t, 1H), 3.80 (dd, 1H), 3.88 (d, 1H), 3.97-3.98 (m, 1H), | | 339 | 341.19 | 3.1 | 6.60 (dd, 1H), 7.31 (dd, 1H), 7.67 (dd, 1H), 8.02 (s, 2H), 8.60 (dd, 1H), 8.81 (dd, 1H) and 13.98 (s, 1H) ppm H NMR (400.0 MHz, DMSO) d 0.94 (t, 3H), 1.33-1.47 (m, 3H), 1.59-1.65 (m, 1H), 2.39-2.41 (m, 1H), 3.25 (dd, 1H), 3.62 (dd, 1H), 3.69 (br s, 1H), 3.84 (dd, 1H), 3.94 (dd, 1H), | | 340 | 391.17 | 3.47 | 6.60 (dd, 1H), 7.30 (dd, 1H), 7.68 (dd, 1H), 8.18 (s, 2H),
8.60 (dd, 1H), 8.81 (dd, 1H) and 13.98 (s, 1H) ppm
H NMR (400.0 MHz, DMSO) d 0.95 (t, 3H), 1.41-1.46 (m,
3H), 1.50-1.54 (m, 1H), 2.64-2.67 (br m, 1H), 3.32 (br s, | | 341 | 391.17 | 3.47 | 1H), 3.80 (dd, 1H), 3.97 (br s, 1H), 3.60-3.97 (masked signals, 2H), 6.69 (d, 1H), 7.30 (dd, 1H), 7.98 (d, 1H), 8.02 (br s, 2H), 8.53 (dd, 1H), 8.60 (dd, 1H) and 14.01 (s, 1H) ppm H NMR (400.0 MHz, DMSO) d 0.93 (t, 3H), 1.35-1.45 (m, 3H), 1.58-1.64 (m, 1H), 2.41 (br m, 1H), 3.31 (br m, 1H), 3.68 (br m, 1H), 3.68 (s, 1H), 3.87 (br m, 1H), 3.96 (br m, 1H), | | 342 | 435 | 3.47 | 6.70 (d, 1H), 7.29 (dd, 1H), 7.99 (d, 1H), 8.14 (br s, 2H), 8.53 (dd, 1H), 8.60 (dd, 1H) and 14.01 (s, 1H) ppm (d6-DMSO, 400 MHz) 0.78 (3H, d), 0.99 (3H, d), 1.09 (3H, s), 2.08-2.13 (1H, m), 3.18-3.22 (1H, m), 3.44 (1H, brm), | | 343 | 435 | 3.57 | 4.54 (1H, d), 5.05 (1H, d), 5.32 (1H, s), 7.26 (1H, s), 7.34 (1H, dd), 7.68 (1H, s), 8.63-8.65 (3H, m), 8.74 (1H, d), 14.16 (1H, s) (d6-DMSO, 400 MHz) 0.84-0.92 (6H, m), 1.23 (3H, s), | | | | | 1.92-1.98 (1H, m), 3.10-3.17 (1H, m), 4.69 (1H, d), 4.86 (1H, d), 5.33 (1H, s), 7.27 (1H, s), 7.32 (1H, dd), 7.68 (1H, s), 8.55 (1H, bm), 8.63 (1H, dd), 8.68 (1H, d), 8.75 (1H, d), 14.15 (1H, s) | | 344 | 381 | 3.01 | 1H NMR (CD3OD) 1.40-1.50 (1H, m), 1.652.15 (12H, m), 2.78-2.84 (1H, t), 2.94-3.01 (1H, m), 4.24-4.27 (1H, dd), 4.72-4.76 (1H, dd), 6.94-6.97 (1H, d), 7.31-7.34 (1H, d), | | 345 | 387 | 3.29 | 7.56-7.61 (1H, t), 8.60-8.61 (1H, d), 8.72-8.74 (1H, d). 1H NMR (MeOD) 0.87-0.94 (6H, m), 1.25-1.60 (5H, m), 1.70-1.90 (2H, m), 2.18-2.23 (1H, m), 3.07-3.14 (1H, m), 4.09-4.15 (1H, m), 6.94-6.97 (1H, d), 7.31-7.34 (1H, m), | | 346 | 371.2 | 2.8 | 7.58-7.63 (1H, d), 8.60-8.61 (1H, d), 8.70-8.72 (1H, d).
H NMR (400.0 MHz, DMSO) d 0.97 (d, J = 7.0 Hz, 3H),
1.02-1.06 (m, 3H), 2.09 (td, J = 6.9, 3.7 Hz, 1H), 2.86-2.92 (m,
1H), 2.96-3.03 (m, 1H), 3.13 (d, J = 2.7 Hz, 1H), 3.71 (dd, J = 2.5, | | | | | 11.5 Hz, 2H), 4.10-4.15 (m, 2H), 4.24 (d, J = 12.1 Hz, 1H), 7.04 (dd, J = 2.4, 9.2 Hz, 1H), 7.29 (dd, J = 4.5, 8.1 Hz, 1H), 7.73-7.78 (m, 1H), 7.84-7.87 (m, 2H), 8.61 (dd, J = 1.5, 4.4 Hz, 1H), 8.68 (dd, J = 1.5, 8.1 Hz, 1H) and 14.02 (s, 1H) | | 347 | 371.2 | 2.92 | ppm
H NMR (400.0 MHz, DMSO) 0.8 (m, 6H), 1.84 (m, 1H),
2.53 (t, 1H), 2.76 (t, 1H), 2.92 (m, 1H), 3.50 (t, 1H), 3.62 (m, 1H),
3.90 (m, 2H), 4.06 (m, 1H), 6.79 (m, 1H), 7.06 (m, 1H), | | 348 | 421.2 | 3.12 | 7.54 (m, 1H), 7.72 (m, 2H), 8.38 (m, 1H), 8.47 (m, 1H) and
13.80 (s, 1H) ppm
H NMR (400.0 MHz, DMSO) d 0.87 (d, J = 6.7 Hz, 3H),
0.93 (d, J = 6.7 Hz, 3H), 1.75 (dd, J = 6.2, 12.1 Hz, 1H), 3.03 (dd, J = 12.2, | | | | | 29.3 Hz, 1H), 3.44-3.46 (m, 1H), 3.57-3.62 (m, 1H),
4.03 (d, J = 9.1 Hz, 1H), 4.21 (d, J = 12.3 Hz, 1H), 4.32 (d, J = 12.4 Hz, 1H), 7.03 (d, J = 9.1 Hz, 1H), 7.28 (dd, J = 4.5, 8.0 Hz, 1H), 8.00 (d, J = 9.1 Hz, 1H), 8.42 (d, J = 8.0 Hz, 1H) and | | 349 | 421.2 | 3.22 | 8.59-8.60 (m, 1H) ppm
H NMR (400.0 MHz, DMSO) d 0.88 (d, J = 6.7 Hz, 3H),
0.96 (d, J = 6.9 Hz, 3H), 2.01 (dd, J = 6.8, 11.4 Hz, 1H), 2.64 (dd, J = 4.5,
7.5 Hz, 1H), 2.92 (dd, J = 10.7, 12.8 Hz, 1H), | | | | | 3.09-3.16 (m, 1H), 3.41 (t, J = 7.9 Hz, 1H), 3.64 (dd, J = 9.2, 11.6 Hz, 1H), 4.06 (dd, J = 2.4, 11.5 Hz, 1H), 4.27 (d, J = 12.6 Hz, 1H), 4.66 (d, J = 12.6 Hz, 1H), 7.08 (d, J = 9.1 Hz, 1H), | | | | | | | 7.3 (dd., J = 4.5, 8.1 Hz, IH), 8.07 (d., J = 9.1 Hz, IH), 8.55 (dd., J = 1.4, 8.1 Hz, IH) and 8.65 (dd., J = 1.4, 6.5 Hz, IH) prom | No. | M + 1
(obs) | RT
(min) | 1H-NMR | |--|-----|----------------|-------------|--| | H NMR (4000 MHz, DMSO) 41.998 (a, Hi), 8.59 (dd.) = 1.5, 45.8 Hz, Hi), 7.39 (d.) = 4.5, 8.0 Hz, 1H), 7.01 (d.) = 9.3 Hz, 1H), 7.83 (a, 2H), 7.27 (dd.) = 4.5, 8.0 Hz, 1H), 7.01 (d.) J = 9.3 Hz, 1H), 3.93-355 (m.) Hi), 3.84 (dd.) = 6.1, 13.2 Hz, 1H), 3.49-3.59 (m.) Hi), 1.76-1.57 (m.) Hi), 1.70-1.61 (m.) Hi), 1.70-1.61 (m.) Hi), 1.70-1.61 (m.) Hi), 1.70-1.72 (m.) Hi), 1.70-1.84 (m.) Hi), 1.70-1.52 (m.) Hi), 1.70-1.35 (m.) Hi), 1.70-1.36 (m.) Hi), 1.70-1.37 (m.) Hi), 1.70-1.38 (m.) Hi), 1.70-1.39 (m.) Hi), 1.70-1.38 | | | | 7.35 (dd, J = 4.5, 8.1 Hz, 1H), 8.07 (d, J = 9.1 Hz, 1H), 8.55 (dd, J = 1.4, | | 4.5 Hz, IH), 8.39 (dd. J = 1.5, 8.1 Hz, IH), 7.93 (d. J = 9.2 Hz, IH), 7.39 (d. J = 4.5 Hz, IH), 7.01 (d. J = 4.5 Hz, IH), 7.01 (d. J = 9.3 Hz, IH), 3.93.39 (m. IH), 3.84 (dd. J = 6.1, 13.2 Hz, IH), 3.93.39 (m. IH), 3.84 (dd. J = 6.1, 13.2 Hz, IH), 3.93.39 (m. IH), 1.76-1.57 (m. 3H), 1.20-1.13 (m. IH), 1.90-6.89 (m. IH), 1.17-1.57 (m. 3H), 1.20-1.13 (m. IH), 1.90-6.89 (m. IH), 1.17-1.53 (H. m.), 1.59-1.91 (dH. m.), 1.39-1.44 (Hl. m.), 1.47-1.53 (H. m.), 1.59-1.91 (dH. m.), 2.83-2.88 (IH. m.), 2.99-2.98 (IH. m.), 3.18 (IH. d.), 3.77-3.81 (2H. m.), 6.99 (IH. dd.), 7.30 (IH. dd.), 7.67-7.01 (3.5H. m.), 8.61 (IH. dd.), 8.65 (IH. d), 1.40 (IH. s.), 8.61 (IH. dd.), 8.65 (IH. d), 1.40 (IH. s.), 8.61 (IH. dd.), 1.37 (IH. dd.), 7.64 (3H. m.), 2.75-2.70 (IH. m.), 2.86-2.91 (IH. m.), 3.34 (IH. d.), 3.41 (IH. d.), 3.37 (IH. d.), 7.64 (3H. brs.), 7.96 (IH. d.), 8.38 (IH. dd.), 8.60 (IH. dd.), 7.29 (IH. dd.), 7.64 (3H. brs.), 7.96 (IH. d.), 8.32 (IH. d.), 8.35 (IH. do.), 7.87 (3H. brs.), 7.96 (IH. d.), 8.35 (IH. do.), 7.87 (3H. brs.), 3.56 (IH. brs.), 3.77 (IH. brs.), 6.59 (IH. d.), 7.29 (IH. dd.), 7.87 (3H. brs.), 7.96 (IH. d.), 8.53 (IH. do.), 7.87 (3H. brs.), 7.96 (IH. d.), 8.53 (IH. do.), 7.87 (3H. brs.), 7.96 (IH. d.), 8.59 (IH. do.), 7.87 (3H. brs.), 7.96 (IH. do.), 8.57 (IH. brs.), 3.77 (IH. brs.), 3.77 (IH. brs.), 3.77 (IH. brs.), 3.75 (IH. brs.), 3.76 (IH. brs.), 3.77 (IH. brs.), 3.77 (IH. brs.), 3.35 (IH. brs.), 3.96 (IH. brs.), 3.77 (IH. brs.), 3.37 (IH. brs.), 3.35 (IH. brs.), 3.96 (IH. brs.), 3.77 (IH. brs.), 3.35 (IH. do.), 3.35 (IH. do.), 7.84 (3H. brs.), 7.96 (IH. d.), 8.52 (IH. do.), 3.35 (IH. do.), 7.84 (3H. brs.), 7.96 (IH. do.), 8.52 (IH. do.), 8.52 (IH. do.), 7.36 (IH. brs.), 3.76 (IH. brs.), 3.77 (IH. brs.), 3.70 (IH. do.), 3.33-33 (IH. do.),
7.31 (IH. brs.), 3.70 (IH. do.), 7.31 (IH. brs.), 4.84 (IH. brs.), 4.94 (IH. brs.), 4.94 (IH. brs.), | 250 | | | | | HI, 7.83 (s. 2H), 7.27 (dd., J = 4.5, 8.0 Hz. 1H), 7.01 (d, J = 9.3 Hz, 1H), 3.49-3.39 (m. 2H), 2.99-2.79 (m. 2H), 2.08-1.09 (m. 1H), 1.91-1.84 (m. 1H), 1.76-1.57 (m. 3H), 1.20-1.13 (m. 1H), 0.96-0.89 (m. 1H) and 0.84-0.69 (m. 6H) ppm 4.64 (m. 1.70) | 330 | | | | | Hill, 349-339 (m, 2H), 299-279 (m, 2H), 208-1.99 (m, H), 193-184 (m, H), 176-137 (m, 3H), 120-1.13 (m, 1H), 096-089 (m, H) and 0.84-0.69 (m, 6H) ppm | | | | | | 181, 1.03-1.84 (m, 1H), 1.76-1.57 (m, 3H), 1.20-1.13 (m, 1H), 0.96-0.89 (m, 1H) and 0.84-0.96 (m, 6H) ppm | | | | | | 131, 0.96-0.89 (m, 1H) and 0.84-0.69 (m, 6H) ppm | | | | | | 1.39-1.44 (IH, m), 1.47-1.53 (IH, m), 1.59-1.91 (4H, m), | | | | | | 2.83 - 2.88 (1.H. m). 2.93 - 2.98 (1.H. m). 3.18 (1.H. d). 3.77 - 3.81 (2.H. m). 6.99 (1H. dd). 7.30 (1H. dd). 7.66 - 7.70 (3.5H. m). 8.61 (1H. dd). 8.65 (1H. d). 1.40 (1H. s) 8.61 (1H. dd). 8.65 (1H. d). 1.40 (1H. s) 8.61 (1H. dd). 8.65 (1H. d). 1.40 (1H. s) 8.61 (1H. dd). 8.65 (1H. d). 1.20 (1H. dd). 1.26 (1H. dd). 1.37 (1H. dd). 1.54 - 1.74 (5H. m). 2.75 - 2.79 (1H. m). 2.86 - 2.91 (1H. m). 3.34 (1H. d). 3.46 (1H. m). 2.17 - 2.91 (1H. dd). 1.70 (1H. dd). 1.400 (1H. s) 8.75 (1H. dd). 7.60 (1H. s). 8.70 (1H. d). 8.38 (1H. dd). 8.60 (1H. dd). 1.400 (1H. s) 8.75 (2.60 (1H. m). 2.95 - 3.00 (2H. m). 3.32 (1H. t). 3.53 (1H. dd). 1.39 6 (1H. s). 3.77 (1H. brs). 6.59 (1H. d). 7.29 (1H. dd). 7.87 (3H. brs). 7.60 (1H. d). 8.37 (1H. d). 8.33 (1H. d). 8.59 (1H. dd). 13.96 (1H. s) 8.36 (2.8 (d6-DMSO., 400 MHz). 1.81 - 1.87 (1H. m). 2.16 - 2.23 (1H. m). 2.57 - 2.60 (1H. m). 2.95 - 2.99 (2H. m). 3.32 (1H. t). 3.53 (1H. brs). 3.67 (1H. brs). 3.77 (1H. brs). 6.59 (1H. d). 7.84 (3H. brs). 7.96 (1H. d). 8.52 (1H. d). 8.59 (1H. dd). 7.84 (3H. brs). 7.96 (1H. d). 8.52 (1H. d). 8.59 (1H. dd). 13.96 (1H. s) 8.36 (1H. brs). 3.77 (1H. brs). 6.59 (1H. dd). 8.59 (1H. dd). 13.96 (1H. s) 8.36 (1H. brs). 3.76 (1H. brs). 3.71 (1H. brs). 6.59 (1H. dd). 13.96 (1H. s) 8.36 (1H. brs). 3.96 (1H. d). 14.90 (1H. brs). 13.96 (1H. d). 14.00 (| 351 | 383 | 3.43 | | | 3.77-3.81 (2H, m), 6.99 (1H, dd), 7.30 (1H, dd), 7.66-7.70 (3.5H, m), 8.61 (1H, dd), 8.66 (1H, d), 1.40 (1H, s) 3.52 (46-DMSO, 460 MHz), 0.90 (6H, dd), 1.26 (1H, dd), 1.37 (1H, dd), 1.34-1.74 (5H, m), 2.75-2.79 (1H, m), 2.86-29 (1H, m), 3.34 (1H, d), 3.46 (1H, 0), 3.92 (2H, m), 7.04 (1H, d), 8.60 (1H, dd), 1.400 (1H, s) 3.53 363 2.83 (46-DMSO, 400 MHz), 1.81-1.87 (1H, m), 2.18-2.22 (1H, m), 2.57-2.60 (1H, m), 2.95-3.00 (2H, m), 3.32 (1H, 0), 3.53 (1H, brs), 3.66 (1H, brs), 3.77 (1H, brs), 6.59 (1H, d), 7.29 (1H, dd), 7.87 (3H, brs), 7.96 (1H, d), 8.59 (1H, d), 7.29 (1H, dd), 7.87 (3H, brs), 7.96 (1H, d), 8.59 (1H, d), 8.59 (1H, dd), 7.87 (3H, brs), 7.96 (1H, d), 8.52 (1H, m), 8.51 (1H, dd), 7.87 (3H, brs), 7.96 (1H, d), 8.52 (1H, d), 8.59 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.52 (1H, d), 8.59 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.52 (1H, d), 8.99 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.52 (1H, d), 8.99 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.52 (1H, d), 8.99 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.52 (1H, d), 8.99 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.52 (1H, d), 8.99 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.52 (1H, d), 8.99 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.52 (1H, d), 8.99 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.52 (1H, d), 8.90 (1H, d), 7.85 (4H, H), 8.60 (4H, H), 8.60 (4H, H), 3.33+3.39 (m, H), 7.71 (4d, HB), 8.07 (8-2H), 8.60 (4d, HB), 7.39 (6d, 7.30 | | | | | | 352 433 3.5 (dc-DMSO, 400 MHz) 0.90 (6H, dd), 1.26 (1H, dd), 1.37 (1H, dd), 1.54-1.74 (SH, m), 2.75-2.79 (1H, m), 2.86-2.91 (1H, m), 3.34 (1H, d), 3.46 (1H, b), 3.92 (2H, m), 7.04 (1H, d), 7.29 (1H, dd), 8.38 (1H, dd), 8.60 (1H, dd), 1.400 (1H, s), 8.38 (1H, dd), 8.38 (1H, dd), 8.60 (1H, dd), 1.400 (1H, s), 8.38 (1H, m), 2.18-2.22 (1H, m), 2.57-2.60 (1H, m), 2.95-3.00 (2H, m), 3.32 (1H, 0), 3.53 (1H, d), 8.59 (1H, dd), 7.87 (3H, brs), 3.66 (1H, brs), 3.57 (1H, brs), 6.59 (1H, d), 7.29 (1H, dd), 7.87 (3H, brs), 7.96 (1H, d), 8.38 (1H, d), 8.59 (1H, dd), 13.96 (1H, s), 8.57 (1H, brs), 5.59 (1H, d), 7.29 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.52 (1H, d), 8.59 (1H, dd), 13.96 (1H, s), 8.57 (1H, brs), 5.59 (1H, d), 7.29 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.52 (1H, d), 8.59 (1H, dd), 13.96 (1H, s), 8.37 (1H, brs), 6.59 (1H, d), 7.29 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.52 (1H, d), 8.59 (1H, dd), 13.96 (1H, s), 8.31 (1H, d), 8.50 (1H, d), 8.37 (1H, brs), 6.59 (1H, d), 1.729 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.37 (1H, brs), 6.59 (1H, dd), 13.96 (1H, s), 8.10 (1H, d), | | | | | | dd), 1.54-1.74 (SH, m), 2.75-2.79 (1H, m), 2.86-2.91 (1H, m), 3.34 (1H, d), 3.46 (1H, d), 3.20 (2H, m), 7.04 (1H, d), 7.29 (1H, dd), 7.64 (SH, brs), 7.96 (1H, d), 8.38 (1H, dd), 8.60 (1H, dd), 1.400 (1H, s), 8.38 (1H, dd), 8.36 (1H, brs), 7.96 (1H, d), 8.38 (1H, dd), 8.60 (1H, dd), 1.400 (1H, s), 8.57 (2H, brs), 8.36 (1H, brs), 7.96 (1H, d), 8.39 (1H, d), 7.29 (1H, dd), 7.87 (3H, brs), 7.96 (1H, d), 8.53 (1H, d), 8.59 (1H, d), 7.29 (1H, dd), 7.87 (3H, brs), 7.96 (1H, d), 8.53 (1H, d), 8.59 (1H, d), 7.29 (1H, dd), 7.87 (3H, brs), 7.96 (1H, d), 8.53 (1H, d), 8.59 (1H, d), 7.29 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.53 (1H, d), 8.59 (1H, d), 7.29 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.50 (2H, d), 7.29 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.59 (2H, d), 8.59 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.59 (2H, d), 8.59 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.59 (1H, d), 7.29 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.59 (1H, d), 7.29 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 3.36 (1H, d), 7.29 (1H, dd), 7.36 (1H, d), 7.36 (1H, d), 7.36 (1H, d), 7.36 (1H, d), 7.37 (1H, brs), 8.59 (1H, d), 7.37 (1H, brs), 8.59 (1H, d), 7.71 (1H, brs), 8.60 (1H, H), 8.67 (8, 1H), 8.67 (8, 1H), 8.67 (8, 1H), 8.67 (8, 1H), 7.30 (4d, 8.40 (4d, 1H), 7.30 (4d, 1H), 7.30 (4d, 1H), 7.30 (4d, 1H), 8.40 (4d, 1H), 7.30 (4d, 1H), 7.30 (4d, 1H), 8.40 (4d, 1H), 7.30 (4d, 1H), 7.30 (4d, 1H), 8.40 (4d, 1H), 7.30 (4d, 1H), 7.30 (4d, 1H), 7.30 (4d, 1H), 8.40 (4d, 1H), 7.30 (4d, 1H), 7.30 (4d, 1H), 8.40 (4d, 1H), 7.30 (4d, 1H), 7.30 (4d, 1H), 7.30 (4d, 1H), 7.30 (4d, 1H), 8.40 (4d, 1H), 7.60 (4d, 1H), 7.30 (4d, 1H), 8.40 (4d, 1H), 7.60 (4d, 1H), 7.30 (4d, 1H), 8.63 (1H, 4d), 4d) | 252 | 422 | 2.55 | | | m), 3.34 (I.H., d), 3.46 (I.H., d), 3.92 (P.H., d), 8.38 (I.H., d), 8.60 (I.H., dd), 1.4.00 (I.H., s) | 332 | 433 | 3.33 | | | dd), 14.00 (1H, s) | | | | | | 363 363 2.85 (d6-DMSO, 400 MHz), 1.81-1.87 (1H, m), 2.18-2.22 (1H, m), 2.57-2.60 (1H, m), 2.95-3.00 (2H, m), 3.32 (1H, d), 3.53 (1H, d), 5.87 (1H, brs), 3.76 (1H, brs), 3.76 (1H, d), 8.79 (1H, d), 7.87 (3H, brs), 7.96 (1H, d), 8.30 (1H, d), 8.29 (1H, d), 7.87 (3H, brs), 3.67 (1H, brs), 3.77 (1H, brs), 6.59 (1H, d), 7.87 (3H, brs), 3.67 (1H, brs), 3.77 (1H, brs), 6.59 (1H, d), 7.29 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.52 (1H, d), 7.29 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.52 (1H, d), 8.59 (1H, d), 7.29 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.52 (1H, d), 8.59 (1H, dd), 7.29 (1H, dd), 7.30 (4H, l), 8.50 (1H, d), 8.52 (1H, d), 8.59 (1H, d), 7.29 (1H, dd), 7.71 (dd, 1H), 8.07 (s, 1H), 4.31 (br m, H), 6.70 (dd, 1H), 7.33 (dd, 1H), 7.71 (dd, 1H), 8.07 (s, 2H), 8.60 (dd, 1H), 8.66 (dd, 1H) and 14.05 (s, 1H) ppm | | | | | | 2.57-2.60 (1H, m), 2.95-3.00 (2H, m), 3.32 (1H, 1), 3.53 (1H, brs), 3.66 (1H, brs), 3.77 (1H, brs), 6.59 (1H, d), 7.29 (1H, dd), 7.87 (3H, brs), 7.96 (1H, d), 8.53 (1H, d), 8.59 (1H, dd), 13.96 (1H, s) | 353 | 363 | 2.85 | | | 7.87 (3H, brs), 7.96 (1H, d), 8.53 (1H, d), 8.59 (1H, dd), 13.96 (1H, s) d) 13.93 (1H, d) 13.33 (1H, d), 3.33 (1H, d) 14.05 (s, 1H) ppm 13.61 (s, 1H) ppm 13.61 (s, 1H) ppm 14.60 (s, 1H) ppm 15.61 (s, 1H) ppm 16.78 (s, 1H) ppm 17.71 (sd, 1H), 8.07 (s, 2H), 8.60 (sd, 1H), 8.66 (sd, 1H) and 14.05 (s, 1H) ppm 18.61 (sd, 1H), 7.30 (sd, 1H), 7.39 (sd, 1H), 4.39 (br s, 1H), 8.60 (sd, 1H), 8.40 (br m, 1H), 4.39 (br s, 1H), 8.60 (sd, 1H), 8.64 (br m, 1H), 4.39 (br s, 1H), 8.60 (sd, 1H) and 14.01 (s, 1H) ppm 18.86 (sd, 1H), 7.30 (sd, 1H), 7.99 (br m, 3H), 8.44 (d, 1H), 8.60 (sd, 1H), 8.60 (sd, 1H), 8.61 (sd, 1H), 7.99 (br m, 3H), 8.44 (d, 1H), 8.60 (sd, 1H), 8.61 (sd, 1H), 7.99 (br m, 3H), 8.44 (d, 1H), 8.61 (sd, 1H), 7.64 (dd, 1H), 7.99 (br m, 3H), 8.44 (d, 1H), 7.31 (dd, 1H), 7.64 (dd, 1H), 7.97 (br s, 2H), 8.59 (dd, 1H), 8.43 (sd, 1H), 7.64 (dd, 1H), 7.97 (br s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (br s, 1H) ppm 18.88 (sd, 1H), 8.64 (H, brs), 4.44 (2H, d), 5.55 (1H, d), 6.57 (1H, d), 6.67 (1H, d), 7.67 (dd, 1H), 7.30 (dd, 1H), 6.40 (dd, 1H), 7.31 (dd, 1H), 7.64 (dd, 1H), 7.30 (dd, 1H), 7.30 (dd, 1H), 8.60 (1H, dd), 8.00 (1H, d), 8.33 (1H, dd), 8.55 (2H, brs), 8.60 (1H, dd), 8.00 (1H, dd), 8.00 (1H, dd), 8.33 (1H, dd), 8.55 (2H, brs), 8.60 (1H, dd), 8.00 (1H, dd), 8.30 (1H, dd), 8.55 (2H, brs), 8.60 (1H, dd), 8.31 (1H), 7.31 (dd, 1H), 7.66 (dd, 1H), 7.96 (s, 2H), 8.59 (dd, 1H), 8.82 (dd, 1H), 7.31 (dd, 1H), 7.66 (dd, 1H), 7.96 (s, 2H), 8.59 (dd, 1H), 8.82 (dd, 1H), 7.30 (dd, 1H), 7.96 (s, 1H), 3.35 (t, 1H), 8.52 (d, 1H), 8.82 (dd, 1H), 7.96 (d, 1H), 7.96 (d, 1H), 8.62 (d, 1H), 8.82 (dd, 1H), 7.96 (d, 1H), 7.96 (d, 1H), 8.63 (dd, 1H), 7.98 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.97 (s, 1H) ppm 18.25 | 555 | 505 | 2.00 | | | 13.96 (1H, s) 13.36 (1H, s) 13.36 (1H, s) 14.97 s | | | | | | 363 | | | | | | bs), 3.67 (1H, bs), 3.77 (1H, brs), 6.59 (1H, d), 7.29 (1H, dd), 7.84 (3H, brs), 7.96 (1H, d), 8.52 (1H, d), 8.59 (1H, dd), 13.96 (1H, s) | 354 | 363 | 2.8 | | | 7.8.4 (3H, brs), 7.96 (1H, d), 8.52 (1H, d), 8.59 (1H, dd), 13.96 (1H, s) 13.98 (1H, s) 13.98 (1H, s) 13.98 (1H, s) 14.98 (19.98 (1.99
(1.99 (| | | | | | 13,96 (1H, s) 2,98-3.04 (m, 1H), 3.09-3.14 (m, 1H), 3.33-3.39 (m, 1H), 3.61-3.65 (m, 1H), 4.31 (br m, 1H), 6.70 (dd, 1H), 7.33 (dd, 1H), 7.71 (dd, 1H), 8.07 (s, 2H), 8.60 (dd, 1H), 8.66 (dd, 1H) and 14.05 (s, 1H) ppm | | | | | | 2,98-3,04 (m, 1H), 3,09-3,14 (m, 1H), 3,33-3,39 (m, 1H), 3,61-3,65 (m, 1H), 4.31 (br m, 1H), 6.70 (dd, 1H), 7.37 (dd, 1H), 7.71 (dd, 1H), 8.07 (s, 2H), 8.60 (dd, 1H), 8.66 (dd, 1H) and 14.05 (s, 1H) ppm | | | | | | 3.61-3.65 (m, 1H), 4.31 (br m, 1H), 6.70 (dd, 1H), 7.33 (dd, 1H), 7.71 (dd, 1H), 8.07 (s, 2H), 8.60 (dd, 1H), 8.66 (dd, 1H) and 14.05 (s, 1H) ppm H NMR (400.0 MHz, DMSO) d 2.05-2.08 (m, 4H), 2.99 (br m, 1H), 3.09 (br m, 1H), 3.41 (br m, 1H), 3.64 (br m, 1H), 4.39 (br s, 1H), 6.78 (d, 1H), 7.30 (dd, 1H), 7.99 (br m, 3H), 8.44 (d, 1H), 8.60 (dd, 1H), 3.41 (br m, 1H), 3.64 (br m, 1H), 4.39 (br s, 1H), 8.60 (dd, 1H), 3.40 (both Mz), 3.40 (br m, 1H), 3.60-3.66 (m, 1H), 3.73 (dd, 1H), 6.49 (dd, 1H), 7.31 (dd, 1H), 7.64 (dd, 1H), 7.97 (br s, 2H), 8.59 (dd, 1H), 3.40-3.53 (m, 1H), 3.60-3.66 (m, 1H), 3.73 (dd, 1H), 6.49 (dd, 1H), 7.31 (dd, 1H), 7.64 (dd, 1H), 7.97 (br s, 2H), 8.59 (dd, 1H), 8.44 (dd, 1H), 7.64 (dd, 1H), 7.97 (br s, 2H), 8.59 (dd, 1H), 8.44 (dd, 1H), 7.64 (dd, 1H), 7.97 (br s, 2H), 8.59 (dd, 1H), 8.45 (dd, 1H), 8.45 (1H, d), 6.57 (1H, d), 6.57 (1H, d), 6.57 (1H, d), 7.08-7.15 (3H, m), 7.36 (1H, dd), 8.00 (1H, d), 8.45 (1H, d), 8.38 (1H, dd), 8.05 (2H, br), 8.60 (1H, dd), 14.01 (1H, s) 360 341.25 2.67 HNR (400.0 MHz, DMSO) d 1.33 (s, 6H), 1.86-1.97 (m, 1H), 2.08-2.14 (m, 1H), 2.57-2.64 (m, 1H), 3.34 (t, 1H), 7.31 (dd, 1H), 7.31 (dd, 1H), 7.66 (dd, 1H), 7.96 (s, 2H), 8.59 (dd, 1H), 8.82 (dd, 1H) and 13.95 (s, 1H) ppm 361 391.24 2.97 HNR (400.0 MHz, DMSO) d 1.31 (s, 6H), 1.87-1.95 (m, 1H), 2.08-2.13 (m, 1H), 2.55-2.60 (br m, 1H), 3.35 (t, 1H), 7.29 (dd, 1H), 7.96 (d, 1H), 8.08 (s, 2H), 8.52 (d, 1H), 8.88 (dd, 1H) and 13.97 (s, 1H) ppm 362 313.18 2.5 HNR (400.0 MHz, DMSO) d 1.81-1.91 (m, 1H), 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.95-3.03 (m, 2H), 3.31 (dd, 1H), 6.49 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.59 (dd, 1H), 8.89 (dd, 1H), 8.90 (dd, 1H), 7.89 (dd, 1H), 8.59 (dd, 1H), 8.59 (dd, 1H), 8.40 (dd, 1H), 7.65 (dd, 1H), 7.30 (dd, 1H), 7.89 (dd, 1H), 8.73 (dd, 1H), 6.59 (dd, 1H), 8.89 (dd, 1H), 8.59 (dd, 1H), 8.59 (dd, 1H), 8.61 (dd, 1H), 7.08 (dd, 1H), 3.17-3.20 (2H, m), 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, d), 7.28 (1H, dd), 7.89 (1H, dd), 7.89 (1H, dd), 7.89 (1H, dd), 7. | 355 | 313.18 | 2.73 | | | 7.71 (dd, 1H), 8.07 (s, 2H), 8.60 (dd, 1H), 8.66 (dd, 1H) and 14.05 (s, 1H) ppm 356 363.16 2.9 H NMR (400.0 MHz, DMSO) d 2.05-2.08 (m, 4H), 2.99 (br m, 1H), 3.09 (br m, 1H), 3.41 (br m, 1H), 3.64 (br m, 1H), 4.39 (br s, 1H), 8.60 (dd, 1H) and 14.01 (s, 1H) ppm 357 313.18 2.48 H NMR (400.0 MHz, DMSO) d 1.81-1.90 (m, 1H), 3.30 (dd, 1H), 3.40-3.53 (m, 1H), 3.60-3.66 (m, 1H), 3.73 (dd, 1H), 649 (dd, 1H), 7.31 (dd, 1H), 7.64 (dd, 1H), 7.97 (br s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (br s, 1H) ppm 358 439 3.9 (d6-DMSO, 400 MHz) 1.41-1.49 (2H, m), 2.04-2.09 (2H, m), 3.29 (2H, t), 3.64 (1H, brs), 4.44 (2H, d), 5.55 (1H, d), 6.57 (1H, t), 6.67 (1H, d), 8.45 (1H, d), 8.55 (1H, dd), 8.00 (1H, d), 8.45 (1H, d), 8.65 (1H, dd), 8.00 (1H, d), 8.45 (1H, d), 8.65 (1H, dd), 8.01 (1H, d), 8.00 (1H, d), 8.38 (1H, dd), 8.55 (2H, brs), 8.60 (1H, dd), 14.01 (1H, s) 360 341.25 2.67 H NMR (400.0 MHz, DMSO) d 1.33 (s, 6H), 1.86-1.97 (m, 1H), 2.08-2.14 (m, 1H), 2.57-2.64 (m, 1H), 3.34 (t, 1H), 3.43-3.49 (m, 1H), 3.66 (t, 1H), 3.75 (t, 1H), 6.53 (dd, 1H), 7.66 (dd, 1H), 7.66 (dd, 1H), 7.85 (dd, 1H), 8.82 (dd, 1H) and 13.95 (s, 1H) ppm 361 391.24 2.97 H NMR (400.0 MHz, DMSO) d 1.31 (s, 6H), 1.87-1.95 (m, 1H), 2.08-2.14 (m, 1H), 2.57-2.64 (m, 1H), 3.35 (t, 1H), 8.82 (dd, 1H) and 13.95 (s, 1H) ppm 362 313.18 2.5 H NMR (400.0 MHz, DMSO) d 1.81 (s, 6H), 1.87-1.95 (m, 1H), 2.08-2.13 (m, 1H), 2.55-2.60 (br m, 1H), 3.35 (t, 1H), 3.45-3.47 (m, 1H), 2.66 (d, 1H), 8.08 (s, 2H), 8.52 (d, 1H), 8.58 (dd, 1H) and 13.95 (s, 1H) ppm 363 349 2.7 (d6-DMSO, 400 MHz, DMSO) d 1.81-1.91 (m, 1H), 3.73 (dd, 1H), 6.49 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.80 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 364 419.18 3.5 H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08 (1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.30 (dd, 1H), 7.28 (dd, 1H), 3.17-3.21 (m, 1H), 2.50-2.12 (m, 1H), 2.50-2.51 (m, 1H), 4.47 (d, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.30 (d, 1H), 7.36 (dd, 1H), 3.17-3.21 (m, 1H), 2.50-2.51 (m, 1H), 4.47 (d, 1H), 4.47 (d, 1H), 4.72 (d, 1H), | | | | | | 363.16 2.9 H NMR (400.0 MHz, DMSO) d 2.05-2.08 (m, 4H), 2.99 (br m, 1H), 3.09 (br m, 1H), 3.41 (br m, 1H), 3.64 (br m, 1H), 4.39 (br s, 1H), 6.78 (d, 1H), 7.30 (dd, 1H), 7.99 (br m, 3H), 8.44 (d, 1H), 8.60 (dd, 1H) and 14.01 (s, 1H) ppm | | | | 7.71 (dd, 1H), 8.07 (s, 2H), 8.60 (dd, 1H), 8.66 (dd, 1H) and | | 1H), 3.09 (br m, 1H), 3.41 (br m, 1H), 3.64 (br m, 1H), 4.39 (br s, 1H), 6.78 (d, 1H), 7.30 (dd, 1H), 7.99 (br m, 3H), 8.44 (d, 1H), 8.60 (dd, 1H) and 14.01 (s, 1H) ppm 313.18 2.48 H NMR (400.0 MHz, DMSO) d 1.81-1.90 (m, 1H), 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.94-3.05 (m, 2H), 3.30 (dd, 1H), 3.40-3.53 (m, 1H), 3.60-3.66 (m, 1H), 3.73 (dd, 1H), 6.49 (dd, 1H), 7.31 (dd, 1H), 7.64 (dd, 1H), 7.97 (br s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (br s, 1H) ppm 358 439 3.9 (46-DMSO, 400 MHz) 1.41-1.49 (2H, m), 2.04-2.09 (2H, m), 3.29 (2H, t), 3.64 (1H, brs), 4.44 (2H, d), 5.55 (1H, d), 6.57 (1H, t), 6.67 (1H, d), 7.08-7.15 (3H, m), 7.36 (1H, dd), 8.00 (1H, d), 8.45 (1H, d), 8.63 (1H, dd) 359 377 2.8 (46-DMSO, 400 MHz) 1.48 (2H, qd), 2.09 (2H, d), 2.59 (3H, t), 3.04 (2H, t), 3.31 (1H, brs), 4.53 (2H, d), 7.09 (1H, d), 7.31 (1H, dd), 8.00 (1H, d), 8.38 (1H, dd), 8.55 (2H, brs), 8.60 (1H, dd), 14.01 (1H, s) 360 341.25 2.67 H NMR (400.0 MHz, DMSO) d 1.33 (s, 6H), 1.86-1.97 (m, 1H), 2.08-2.14 (m, 1H), 2.57-2.64 (m, 1H), 3.34 (t, 1H), 3.43-3.49 (m, 1H), 3.66 (t, 1H), 3.75 (t, 1H), 6.53 (dd, 1H), 7.31 (dd, 1H), 7.66 (dd, 1H), 7.96 (s, 2H), 8.59 (dd, 1H), 8.82 (dd, 1H) and 13.97 (s, 1H) ppm 361 391.24 2.97 H NMR (400.0 MHz, DMSO) d 1.31 (s, 6H), 1.87-1.95 (m, 1H), 2.08-2.13 (m, 1H), 2.55-2.60 (br m, 1H), 3.35 (t, 1H), 3.45-3.47 (m, 1H), 3.65-3.80 (br m, 2H), 3.50 (d, 1H), 8.58 (dd, 1H) and 13.97 (s, 1H) ppm 362 313.18 2.5 H NMR (400.0 MHz, DMSO) d 1.81-1.91 (m, 1H), 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.95-3.03 (m, 2H), 3.31 (dd, 1H), 6.49 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 363 349 2.7 (d6-DMSO, 400 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (m, 2H), 2.08-2.12 (m, 1H), 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, d), 7.28 (dd, tH), 6.10 (1H, 4H), 6.10 (dd, 1H), 7.03 (dd, 1H), 7.03 (dd, 1H), 7.03 (dd, 1H), 7.03 (dd, 1H), 9.09 (qd | 256 | 262 16 | 2.0 | | | S, 1H), 6.78 (d, 1H), 7.30 (dd, 1H), 7.99 (br m, 3H), 8.44 (d, 1H), 8.60 (dd, 1H) and 14.01 (s, 1H) ppm | 330 | 303.10 | 2.9 | | | 313.18 2.48 H NMR (400.0 MHz, DMSO) d 1.81-1.90 (m, 1H), 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.94-3.05 (m, 2H), 3.30 (dd, 1H), 3.40-3.53 (m, 1H), 3.60-3.66 (m, 1H), 3.73 (dd, 1H), 6.49 (dd, 1H), 7.31 (dd, 1H), 7.64 (dd, 1H), 7.97 (br s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (br s, 1H) ppm 32.9 (2H, t), 3.64 (1H, brs), 4.44 (2H, d), 5.55 (1H, d), 6.57 (1H, t), 6.67 (1H, d), 7.08-7.15 (3H, m), 7.36 (1H, dd), 8.00 (1H, d), 8.45 (1H, d), 8.63 (1H, dd), 8.00 (1H, d), 8.45 (1H, d), 8.63 (1H, dd), 2.09 (2H, d), 2.59 (3H, t), 3.04 (2H, t), 3.31 (1H, brs), 4.53 (2H, d), 7.09 (1H, d), 7.31 (1H, dd), 8.00 (1H, d), 8.38 (1H, dd), 8.55 (2H, brs), 8.60 (1H, dd), 14.01 (1H, s) 360 341.25 2.67 H NMR (400.0 MHz, DMSO) d 1.33 (s, 6H), 1.86-1.97 (m, 1H), 2.08-2.14 (m, 1H), 2.57-2.64 (m, 1H), 3.34 (t, 1H), 3.43-3.49 (m, 1H), 3.66 (t, 1H), 3.75 (t, 1H), 6.53 (dd, 1H), 7.31 (dd, 1H), 7.66 (dd, 1H), 7.96 (s, 2H), 8.59 (dd, 1H), 8.82 (dd, 1H) and 13.95 (s, 1H) ppm 361 391.24 2.97 H NMR (400.0 MHz, DMSO) d 1.31 (s, 6H), 1.87-1.95 (m, 1H), 2.08-2.13 (m, 1H), 2.55-2.60 (br m, 1H), 3.35 (t, 1H), 3.45-3.47 (m, 1H), 3.65-3.80 (br m, 2H), 6.62 (d, 1H), 7.29 (dd, 1H), 7.96 (d, 1H), 8.08 (s, 2H), 8.52 (d, 1H), 8.58 (dd, 1H) and 13.97 (s, 1H) ppm 362 313.18 2.5 H NMR (400.0 MHz, DMSO) d 1.81-1.91 (m, 1H), 3.32-3.60 (masked signal, 1H),
3.65-3.03 (m, 2H), 3.31 (dd, 1H), 3.32-3.60 (masked signal, 1H), 3.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 363 349 2.7 (d6-DMSO, 400 MHz, DMSO) d 1.81-1.91 (m, 1H), 3.73 (dd, 1H), 6.49 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 364 419.18 3.62 H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.20-2.15 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.19 (d, 1H), 7.90 (d, 1H), 7. | | | | s, 1H), 6.78 (d, 1H), 7.30 (dd, 1H), 7.99 (br m, 3H), 8.44 (d, | | 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.94-3.05 (m, 2H), 3.30 (dd, 1H), 3.40-3.33 (m, 1H), 3.60-3.65 (m, 1H), 3.73 (dd, 1H), 6.49 (dd, 1H), 1H), 7.10 (dd, 1H), 7.97 (br s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (br s, 1H) ppm 3.9 (d6-DMSO, 400 MHz) 1.41-1.49 (2H, m), 2.04-2.09 (2H, m), 3.29 (2H, t), 3.64 (1H, brs), 4.44 (2H, d), 5.55 (1H, d), 6.57 (1H, d), 6.67 (1H, d), 7.08-7.15 (3H, m), 7.36 (1H, dd), 8.00 (1H, d), 8.45 (1H, d), 8.63 (1H, dd) 359 377 2.8 (d6-DMSO, 400 MHz) 1.48 (2H, qd), 2.09 (2H, d), 2.59 (3H, t), 3.04 (2H, t), 3.31 (1H, brs), 4.53 (2H, d), 7.09 (1H, d), 7.31 (1H, dd), 8.00 (1H, d), 8.38 (1H, dd), 8.55 (2H, brs), 8.60 (1H, dd), 14.01 (1H, s) 360 341.25 2.67 H NMR (400.0 MHz, DMSO) d 1.33 (s, 6H), 1.86-1.97 (m, 1H), 2.08-2.14 (m, 1H), 2.57-2.64 (m, 1H), 3.34 (t, 1H), 3.43-3.49 (m, 1H), 3.66 (t, 1H), 3.75 (t, 1H), 6.53 (dd, 1H), 7.31 (dd, 1H), 7.69 (dd, 1H), 7.96 (s, 2H), 8.59 (dd, 1H), 8.82 (dd, 1H) and 13.95 (s, 1H) ppm 361 391.24 2.97 H NMR (400.0 MHz, DMSO) d 1.31 (s, 6H), 1.87-1.95 (m, 1H), 2.08-2.13 (m, 1H), 2.55-2.60 (br m, 1H), 3.35 (t, 1H), 3.45-3.47 (m, 1H), 3.65-3.80 (br m, 2H), 6.62 (d, 1H), 7.29 (dd, 1H), 7.96 (d, 1H), 8.08 (s, 2H), 8.52 (d, 1H), 8.58 (dd, 1H) and 13.97 (s, 1H) ppm 362 313.18 2.5 H NMR (400.0 MHz, DMSO) d 1.81-1.91 (m, 1H), 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.95-3.03 (m, 2H), 3.31 (dd, 1H), 3.32-3.60 (masked signal, 1H), 3.60-3.66 (m, 1H), 3.73 (dd, 1H), 6.49 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 363 349 2.7 (d6-DMSO, 400 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.26 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.72-2.11 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm | 357 | 313.18 | 2.48 | | | 1H), 7.31 (dd, 1H), 7.64 (dd, 1H), 7.97 (br s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (br s, 1H) ppm 358 439 3.9 (d6-DMSO, 400 MHz) 1.41-1.49 (2H, m), 2.04-2.09 (2H, m), 3.29 (2H, t), 3.64 (1H, brs), 4.44 (2H, d), 5.55 (1H, d), 6.57 (1H, t), 6.67 (1H, d), 7.08-7.15 (3H, m), 7.36 (1H, dd), 8.00 (1H, d), 8.45 (1H, d), 8.63 (1H, dd) 359 377 2.8 (d6-DMSO, 400 MHz) 1.48 (2H, qd), 2.09 (2H, d), 2.59 (3H, t), 3.04 (2H, t), 3.31 (1H, brs), 4.53 (2H, d), 7.09 (1H, d), 7.31 (1H, dd), 8.00 (1H, d), 8.38 (1H, dd), 8.55 (2H, brs), 8.60 (1H, dd), 14.01 (1H, s) 360 341.25 2.67 H NMR (400.0 MHz, DMSO) d 1.33 (s, 6H), 1.86-1.97 (m, 1H), 2.08-2.14 (m, 1H), 2.57-2.64 (m, 1H), 3.34 (t, 1H), 3.43-3.49 (m, 1H), 3.66 (t, 1H), 3.75 (t, 1H), 6.53 (dd, 1H), 7.31 (dd, 1H), 7.66 (dd, 1H), 7.96 (s, 2H), 8.59 (dd, 1H), 8.82 (dd, 1H) and 13.95 (s, 1H) ppm 361 391.24 2.97 H NMR (400.0 MHz, DMSO) d 1.31 (s, 6H), 1.87-1.95 (m, 1H), 2.08-2.13 (m, 1H), 2.55-2.60 (br m, 1H), 3.35 (t, 1H), 3.45-3.47 (m, 1H), 3.65-3.80 (br m, 2H), 6.62 (d, 1H), 7.29 (dd, 1H), 7.96 (d, 1H), 8.08 (s, 2H), 8.52 (d, 1H), 8.58 (dd, 1H) and 13.97 (s, 1H) ppm 362 313.18 2.5 H NMR (400.0 MHz, DMSO) d 1.81-1.91 (m, 1H), 2.17-2.25 (m, 1H), 2.06 (qn, 1H), 2.95-3.03 (m, 2H), 3.31 (dd, 1H), 6.49 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 363 349 2.7 (d6-DMSO, 400 MHz) 2.99-3.05 (1H, m), 3.17-3.20 (2H, m), 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, d), 7.28 (1H, dd), 7.83 (3H, brs), 7.97 (1H, d), 8.54-8.60 (2H, m), 14-01 (1H, s) 364 419.18 3.62 H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.60 (dd, 1H), 8.00-8.05 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.27 (d, 1H), 4.72 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | 557 | 313.10 | 2.70 | | | 1H), 8.84 (dd, 1H) and 13.94 (br s, 1H) ppm 3.9 (dd-DMSO, 400 MHz) 1.41-1.49 (2H, m), 2.04-2.09 (2H, m), 3.29 (2H, t), 3.64 (1H, brs), 4.44 (2H, d), 5.55 (1H, d), 6.57 (1H, t), 6.67 (1H, d), 7.08-7.15 (3H, m), 7.36 (1H, dd), 8.00 (1H, d), 8.45 (1H, d), 8.63 (1H, dd) 3.04 (2H, t), 3.31 (1H, brs), 4.53 (2H, d), 7.09 (1H, d), 7.31 (1H, dd), 8.00 (1H, d), 8.38 (1H, dd), 8.55 (2H, brs), 8.60 (1H, dd), 14.01 (1H, s) 360 341.25 2.67 H NMR (400.0 MHz, DMSO) d 1.33 (s, 6H), 1.86-1.97 (m, 11H), 2.08-2.14 (m, 1H), 2.57-2.64 (m, 1H), 3.34 (t, 1H), 3.43-3.49 (m, 1H), 3.66 (t, 1H), 3.75 (t, 1H), 6.53 (dd, 1H), 7.31 (dd, 1H), 7.66 (dd, 1H), 7.96 (s, 2H), 8.59 (dd, 1H), 8.82 (dd, 1H) and 13.95 (s, 1H) ppm 361 391.24 2.97 H NMR (400.0 MHz, DMSO) d 1.31 (s, 6H), 1.87-1.95 (m, 11H), 2.08-2.13 (m, 1H), 2.55-2.60 (br m, 1H), 3.35 (t, 1H), 3.45-3.47 (m, 1H), 3.65-3.80 (br m, 2H), 6.62 (d, 1H), 7.29 (dd, 1H), 7.96 (d, 1H), 8.08 (s, 2H), 8.52 (d, 1H), 8.58 (dd, 1H) and 13.97 (s, 1H) ppm 362 313.18 2.5 H NMR (400.0 MHz, DMSO) d 1.81-1.91 (m, 1H), 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.95-3.03 (m, 2H), 3.31 (dd, 1H), 3.32-3.60 (masked signal, 1H), 3.60-3.66 (m, 1H), 3.73 (dd, 1H), 6.49 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 363 349 2.7 (d6-DMSO, 400 MHz) 2.99-3.05 (1H, m), 3.17-3.20 (2H, m), 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, d), 7.28 (1H, dd), 7.83 (3H, brs), 7.97 (1H, d), 8.54-8.60 (2H, m), 14.01 (1H, s) 4 H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.03 (d, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.03 (dd, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), 3.60 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 3.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | | | | | | 358 439 3.9 (d6-DMSO, 400 MHz) 1.41-1.49 (2H, m), 2.04-2.09 (2H, m), 3.29 (2H, t), 3.64 (1H, brs), 4.44 (2H, d), 5.55 (1H, d), 6.57 (1H, t), 6.67 (1H, d), 7.08-7.15 (3H, m), 7.36 (1H, dd), 8.00 (1H, d), 8.45 (1H, d), 8.63 (1H, dd) 359 377 2.8 (d6-DMSO, 400 MHz) 1.48 (2H, qd), 2.09 (2H, d), 2.59 (3H, t), 3.04 (2H, t), 3.31 (1H, brs), 4.53 (2H, d), 7.09 (1H, d), 7.31 (1H, dd), 8.00 (1H, d), 8.38 (1H, dd), 8.55 (2H, brs), 8.60 (1H, dd), 14.01 (1H, s) 360 341.25 2.67 H NMR (400.0 MHz, DMSO) d 1.33 (s, 6H), 1.86-1.97 (m, 1H), 2.08-2.14 (m, 1H), 2.57-2.64 (m, 1H), 3.34 (t, 1H), 7.31 (dd, 1H), 7.66 (dd, 1H), 7.96 (s, 2H), 8.59 (dd, 1H), 8.82 (dd, 1H) and 13.95 (s, 1H) ppm 361 391.24 2.97 H NMR (400.0 MHz, DMSO) d 1.31 (s, 6H), 1.87-1.95 (m, 1H), 2.08-2.13 (m, 1H), 2.55-2.60 (br m, 1H), 3.35 (t, 1H), 3.45-3.47 (m, 1H), 3.65-3.80 (br m, 2H), 6.62 (d, 1H), 7.29 (dd, 1H), 7.96 (d, 1H), 8.08 (s, 2H), 8.52 (d, 1H), 8.58 (dd, 1H) and 13.97 (s, 1H) ppm 362 313.18 2.5 H NMR (400.0 MHz, DMSO) d 1.81-1.91 (m, 1H), 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.95-3.03 (m, 2H), 3.31 (dd, 1H), 6.49 (dd, 1H), 7.30 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.59 (dd, 1H), 8.59 (dd, 1H), 7.80 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 363 349 2.7 (d6-DMSO, 400 MHz) 2.99-3.05 (1H, m), 3.17-3.20 (2H, m), 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, d), 7.28 (1H, dd), 7.83 (3H, brs), 7.97 (1H, d), 8.54-8.60 (2H, m), 14.01 (1H, s) 364 419.18 3.62 H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.26 (dd, 1H), 8.00-8.05 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.26 (dd, 1H), 8.00-8.05 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (dd, 1H), 7.03 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm 365 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | | | | | | 359 377 2.8 (d6-DMSO, 400 MHz) 1.48 (2H, qd), 2.09 (2H, d), 2.59 (3H, t), 3.04 (2H, t), 3.31 (1H, dh), 8.45 (2H, qd), 2.09 (2H, d), 2.59 (3H, t), 3.04 (2H, t), 3.31 (1H, brs), 4.53 (2H, d), 7.09 (1H, d), 7.31 (1H, dd), 8.00 (1H, d), 8.38 (1H, dd), 8.55 (2H, brs), 8.60 (1H, dd), 14.01 (1H, s) 360 341.25 2.67 H NMR (400.0 MHz, DMSO) d 1.33 (s, 6H), 1.86-1.97 (m, 1H), 2.08-2.14 (m, 1H), 2.57-2.64 (m, 1H), 3.34 (t, 1H), 3.43-3.49 (m, 1H), 3.66 (t, 1H), 3.75 (t, 1H), 6.53 (dd, 1H), 7.31 (dd, 1H), 7.66 (dd, 1H), 7.96 (s, 2H), 8.59 (dd, 1H), 8.82 (dd, 1H) and 13.95 (s, 1H) ppm 361 391.24 2.97 H NMR (400.0 MHz, DMSO) d 1.31 (s, 6H), 1.87-1.95 (m, 1H), 2.08-2.13 (m, 1H), 2.55-2.60 (br m, 1H), 3.35 (t, 1H), 3.45-3.47 (m, 1H), 3.65-3.80 (br m, 2H), 6.62 (d, 1H), 7.29 (dd, 1H), 7.96 (d, 1H), 8.08 (s, 2H), 8.52 (d, 1H), 8.58 (dd, 1H) and 13.97 (s, 1H) ppm 362 313.18 2.5 H NMR (400.0 MHz, DMSO) d 1.81-1.91 (m, 1H), 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.95-3.03 (m, 2H), 3.31 (dd, 1H), 3.32-3.60 (masked signal, 1H), 3.60-3.66 (m, 1H), 3.73 (dd, 1H), 6.49 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 363 349 2.7 (d6-DMSO, 400 MHz) 2.99-3.05 (1H, m), 3.17-3.20 (2H, m), 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, dd), 7.28 (1H, dd), 7.38 (3H, brs),
7.97 (1H, d), 8.54-8.60 (2H, m), 14.01 (1H, s) 364 419.18 3.62 H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm 365 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | 358 | 439 | 3.9 | | | 8.00 (1H, d), 8.45 (1H, d), 8.63 (1H, dd) 377 2.8 (d6-DMSO, 400 MHz) 1.48 (2H, qd), 2.09 (2H, d), 2.59 (3H, t), 3.04 (2H, t), 3.31 (1H, brs), 4.53 (2H, d), 7.09 (1H, d), 7.31 (1H, dd), 8.00 (1H, d), 8.38 (1H, dd), 8.55 (2H, brs), 8.60 (1H, dd), 14.01 (1H, s) 360 341.25 2.67 H NMR (400.0 MHz, DMSO) d 1.33 (s, 6H), 1.86-1.97 (m, 1H), 2.08-2.14 (m, 1H), 2.57-2.64 (m, 1H), 3.34 (t, 1H), 3.43-3.49 (m, 1H), 3.66 (t, 1H), 3.75 (t, 1H), 6.53 (dd, 1H), 8.82 (dd, 1H) and 13.95 (s, 1H) ppm 361 391.24 2.97 H NMR (400.0 MHz, DMSO) d 1.31 (s, 6H), 1.87-1.95 (m, 1H), 2.08-2.13 (m, 1H), 2.55-2.60 (br m, 1H), 3.35 (t, 1H), 3.45-3.47 (m, 1H), 3.65-3.80 (br m, 2H), 6.62 (d, 1H), 8.58 (dd, 1H) and 13.97 (s, 1H) ppm 362 313.18 2.5 H NMR (400.0 MHz, DMSO) d 1.81-1.91 (m, 1H), 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.95-3.03 (m, 2H), 3.31 (dd, 1H), 6.49 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 363 349 2.7 (d6-DMSO, 400 MHz) 2.99-3.05 (1H, m), 3.17-3.20 (2H, m), 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, d), 7.28 (1H, dd), 7.83 (3H, brs), 7.97 (1H, d), 8.54-8.60 (2H, m), 14.01 (1H, s) 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.66 (dd, 1H), 8.07-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.09-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H), 7.22 (dd, 1H), 8.09-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H), 1.52 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | | | | | | 359 377 2.8 (d6-DMSO, 400 MHz) 1.48 (2H, qd), 2.09 (2H, d), 2.59 (3H, t), 3.04 (2H, t), 3.31 (1H, brs), 4.53 (2H, d), 7.09 (1H, d), 7.31 (1H, dd), 8.00 (1H, d), 8.38 (1H, dd), 8.55 (2H, brs), 8.60 (1H, dd), 14.01 (1H, s) 360 341.25 2.67 H NMR (400.0 MHz, DMSO) d 1.33 (s, 6H), 1.86-1.97 (m, 1H), 2.08-2.14 (m, 1H), 2.57-2.64 (m, 1H), 3.34 (t, 1H), 3.43-3.49 (m, 1H), 3.66 (t, 1H), 3.75 (t, 1H), 6.53 (dd, 1H), 7.31 (dd, 1H), 7.66 (dd, 1H), 7.96 (s, 2H), 8.59 (dd, 1H), 8.82 (dd, 1H) and 13.95 (s, 1H) ppm 361 391.24 2.97 H NMR (400.0 MHz, DMSO) d 1.31 (s, 6H), 1.87-1.95 (m, 1H), 2.08-2.13 (m, 1H), 2.55-2.60 (br m, 1H), 3.35 (t, 1H), 3.45-3.47 (m, 1H), 3.65-3.80 (br m, 2H), 6.62 (d, 1H), 7.29 (dd, 1H), 7.96 (d, 1H), 8.08 (s, 2H), 8.52 (d, 1H), 8.58 (dd, 1H) and 13.97 (s, 1H) ppm 362 313.18 2.5 H NMR (400.0 MHz, DMSO) d 1.81-1.91 (m, 1H), 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.95-3.03 (m, 2H), 3.31 (dd, 1H), 3.32-3.60 (masked signal, 1H), 3.60-3.66 (m, 1H), 3.73 (dd, 1H), 6.49 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 363 349 2.7 (d6-DMSO, 400 MHz) 2.99-3.05 (1H, m), 3.17-3.20 (2H, m), 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, d), 7.28 (1H, dd), 7.83 (3H, brs), 7.97 (1H, d), 8.54-8.60 (2H, m), 14.01 (1H, s) 364 419.18 3.62 H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm 365 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | | | | | | 7.31 (1H, dd), 8.00 (1H, d), 8.38 (1H, dd), 8.55 (2H, brs), 8.60 (1H, dd), 14.01 (1H, s) 360 341.25 2.67 H NMR (400.0 MHz, DMSO) d 1.33 (s, 6H), 1.86-1.97 (m, 1H), 2.08-2.14 (m, 1H), 2.57-2.64 (m, 1H), 3.34 (t, 1H), 3.43-3.49 (m, 1H), 3.66 (t, 1H), 3.75 (t, 1H), 6.53 (dd, 1H), 7.31 (dd, 1H), 7.66 (dd, 1H), 7.96 (s, 2H), 8.59 (dd, 1H), 8.82 (dd, 1H) and 13.95 (s, 1H) ppm 361 391.24 2.97 H NMR (400.0 MHz, DMSO) d 1.31 (s, 6H), 1.87-1.95 (m, 1H), 2.08-2.13 (m, 1H), 2.55-2.60 (br m, 1H), 3.35 (t, 1H), 3.45-3.47 (m, 1H), 3.65-3.80 (br m, 2H), 6.62 (d, 1H), 7.29 (dd, 1H), 7.96 (d, 1H), 8.08 (s, 2H), 8.52 (d, 1H), 8.58 (dd, 1H) and 13.97 (s, 1H) ppm 362 313.18 2.5 H NMR (400.0 MHz, DMSO) d 1.81-1.91 (m, 1H), 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.95-3.03 (m, 2H), 3.31 (dd, 1H), 3.32-3.60 (masked signal, 1H), 3.60-3.66 (m, 1H), 3.73 (dd, 1H), 6.49 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 363 349 2.7 (d6-DMSO, 400 MHz) 2.99-3.05 (1H, m), 3.17-3.20 (2H, m), 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, d), 7.28 (1H, dd), 7.83 (3H, brs), 7.97 (1H, d), 8.54-8.60 (2H, m), 14.01 (1H, s) 364 419.18 3.62 H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.08-2.12 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm 365 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | 359 | 377 | 2.8 | | | dd), 14.01 (1H, s) 341.25 | | | | | | 1H), 2.08-2.14 (m, 1H), 2.57-2.64 (m, 1H), 3.34 (t, 1H), 3.43-3.49 (m, 1H), 3.66 (t, 1H), 3.75 (t, 1H), 6.53 (dd, 1H), 7.31 (dd, 1H), 7.66 (dd, 1H), 7.96 (s, 2H), 8.59 (dd, 1H), 8.82 (dd, 1H) and 13.95 (s, 1H) ppm 361 391.24 2.97 H NMR (400.0 MHz, DMSO) d 1.31 (s, 6H), 1.87-1.95 (m, 1H), 2.08-2.13 (m, 1H), 2.55-2.60 (br m, 1H), 3.35 (t, 1H), 3.45-3.47 (m, 1H), 3.65-3.80 (br m, 2H), 6.62 (d, 1H), 7.99 (dd, 1H), 7.96 (d, 1H), 8.08 (s, 2H), 8.52 (d, 1H), 8.58 (dd, 1H) and 13.97 (s, 1H) ppm 362 313.18 2.5 H NMR (400.0 MHz, DMSO) d 1.81-1.91 (m, 1H), 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.95-3.03 (m, 2H), 3.31 (dd, 1H), 3.32-3.60 (masked signal, 1H), 3.60-3.66 (m, 1H), 3.73 (dd, 1H), 6.49 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 363 349 2.7 (d6-DMSO, 400 MHz) 2.99-3.05 (1H, m), 3.17-3.20 (2H, m), 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, d), 7.28 (1H, dd), 7.83 (3H, brs), 7.97 (1H, d), 8.54-8.60 (2H, m), 14.01 (1H, s) 364 419.18 3.62 H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm 365 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | | | | | | 3.43-3.49 (m, 1H), 3.66 (t, 1H), 3.75 (t, 1H), 6.53 (dd, 1H), 7.31 (dd, 1H), 7.66 (dd, 1H), 7.96 (s, 2H), 8.59 (dd, 1H), 8.82 (dd, 1H) and 13.95 (s, 1H) ppm 361 391.24 2.97 H NMR (400.0 MHz, DMSO) d 1.31 (s, 6H), 1.87-1.95 (m, 1H), 2.08-2.13 (m, 1H), 2.55-2.60 (br m, 1H), 3.35 (t, 1H), 3.45-3.47 (m, 1H), 3.65-3.80 (br m, 2H), 6.62 (d, 1H), 7.29 (dd, 1H), 7.96 (d, 1H), 8.08 (s, 2H), 8.52 (d, 1H), 8.58 (dd, 1H) and 13.97 (s, 1H) ppm 362 313.18 2.5 H NMR (400.0 MHz, DMSO) d 1.81-1.91 (m, 1H), 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.95-3.03 (m, 2H), 3.31 (dd, 1H), 3.32-3.60 (masked signal, 1H), 3.60-3.66 (m, 1H), 3.73 (dd, 1H), 6.49 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 363 349 2.7 (d6-DMSO, 400 MHz) 2.99-3.05 (1H, m), 3.17-3.20 (2H, m), 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, d), 7.28 (1H, dd), 7.83 (3H, brs), 7.97 (1H, d), 8.54-8.60 (2H, m), 14.01 (1H, s) 364 419.18 3.62 H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm 365 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | 360 | 341.25 | 2.67 | | | 7.31 (dd, 1H), 7.66 (dd, 1H), 7.96 (s, 2H), 8.59 (dd, 1H), 8.82 (dd, 1H) and 13.95 (s, 1H) ppm 361 391.24 2.97 H NMR (400.0 MHz, DMSO) d 1.31 (s, 6H), 1.87-1.95 (m, 1H), 2.08-2.13 (m, 1H), 2.55-2.60 (br m, 1H), 3.35 (t, 1H), 3.45-3.47 (m, 1H), 3.65-3.80 (br m, 2H), 6.62 (d, 1H), 7.29 (dd, 1H), 7.96 (d, 1H), 8.08 (s, 2H), 8.52 (d, 1H), 8.58 (dd, 1H) and 13.97 (s, 1H) ppm 362 313.18 2.5 H NMR (400.0 MHz, DMSO) d 1.81-1.91 (m, 1H), 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.95-3.03 (m, 2H), 3.31 (dd, 1H), 3.32-3.60 (masked signal, 1H), 3.60-3.66 (m, 1H), 3.73 (dd, 1H), 6.49 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 363 349 2.7 (d6-DMSO, 400 MHz) 2.99-3.05 (1H, m), 3.17-3.20 (2H, m), 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, d), 7.28 (1H, dd), 7.83 (3H, brs), 7.97 (1H, d), 8.54-8.60 (2H, m), 14.01 (1H, s) 364 419.18 3.62 H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm 365 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | | | | | | 361 391.24 2.97 H NMR (400.0 MHz, DMSO) d 1.31 (s, 6H), 1.87-1.95 (m, 1H), 2.08-2.13 (m, 1H), 2.55-2.60 (br m, 1H), 3.35 (t, 1H), 3.45-3.47 (m, 1H), 3.65-3.80 (br m, 2H), 6.62 (d, 1H), 7.29 (dd, 1H), 7.96 (d, 1H), 8.08 (s, 2H), 8.52 (d, 1H), 8.58 (dd, 1H) and 13.97 (s, 1H) ppm 362 313.18 2.5 H NMR (400.0 MHz, DMSO) d 1.81-1.91 (m, 1H), 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.95-3.03 (m, 2H), 3.31 (dd, 1H), 3.32-3.60 (masked signal, 1H), 3.60-3.66 (m, 1H), 3.73 (dd, 1H), 6.49 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd,
1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 363 349 2.7 (d6-DMSO, 400 MHz) 2.99-3.05 (1H, m), 3.17-3.20 (2H, m), 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, d), 7.28 (1H, dd), 7.83 (3H, brs), 7.97 (1H, d), 8.54-8.60 (2H, m), 14.01 (1H, s) H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm 365 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | | | | | | 1H), 2.08-2.13 (m, 1H), 2.55-2.60 (br m, 1H), 3.35 (t, 1H), 3.45-3.47 (m, 1H), 3.65-3.80 (br m, 2H), 6.62 (d, 1H), 7.29 (dd, 1H), 7.96 (d, 1H), 8.08 (s, 2H), 8.52 (d, 1H), 8.58 (dd, 1H) and 13.97 (s, 1H) ppm 362 313.18 2.5 H NMR (400.0 MHz, DMSO) d 1.81-1.91 (m, 1H), 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.95-3.03 (m, 2H), 3.31 (dd, 1H), 3.32-3.60 (masked signal, 1H), 3.60-3.66 (m, 1H), 3.73 (dd, 1H), 6.49 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 363 349 2.7 (d6-DMSO, 400 MHz) 2.99-3.05 (1H, m), 3.17-3.20 (2H, m), 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, d), 7.28 (1H, dd), 7.83 (3H, brs), 7.97 (1H, d), 8.54-8.60 (2H, m), 14.01 (1H, s) 364 419.18 3.62 H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm 365 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | 261 | 201.24 | 2.07 | | | 3.45-3.47 (m, 1H), 3.65-3.80 (br m, 2H), 6.62 (d, 1H), 3.45-3.47 (m, 1H), 3.65-3.80 (br m, 2H), 6.62 (d, 1H), 3.45-3.47 (m, 1H), 7.96 (d, 1H), 8.08 (s, 2H), 8.52 (d, 1H), 8.58 (dd, 1H) 3.47 (s, 1H) ppm 3.48 2.5 H NMR (400.0 MHz, DMSO) d 1.81-1.91 (m, 1H), 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.95-3.03 (m, 2H), 3.31 (dd, 1H), 3.32-3.60 (masked signal, 1H), 3.60-3.66 (m, 1H), 3.73 (dd, 1H), 8.59 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 3.49 2.7 (d6-DMSO, 400 MHz) 2.99-3.05 (1H, m), 3.17-3.20 (2H, m), 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, d), 7.28 (1H, dd), 7.83 (3H, brs), 7.97 (1H, d), 8.54-8.60 (2H, m), 14.01 (1H, s) 3.64 419.18 3.62 H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm 3.55 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | 301 | 391.24 | 2.97 | | | and 13.97 (s, 1H) ppm 362 313.18 2.5 H NMR (400.0 MHz, DMSO) d 1.81-1.91 (m, 1H), 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.95-3.03 (m, 2H), 3.31 (dd, 1H), 3.32-3.60 (masked signal, 1H), 3.60-3.66 (m, 1H), 3.73 (dd, 1H), 6.49 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 363 349 2.7 (d6-DMSO, 400 MHz) 2.99-3.05 (1H, m), 3.17-3.20 (2H, m), 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, d), 7.28 (1H, dd), 7.83 (3H, brs), 7.97 (1H, d), 8.54-8.60 (2H, m), 14.01 (1H, s) 364 419.18 3.62 H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm 365 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | | | | 3.45-3.47 (m, 1H), 3.65-3.80 (br m, 2H), 6.62 (d, 1H), | | 362 313.18 2.5 H NMR (400.0 MHz, DMSO) d 1.81-1.91 (m, 1H), 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.95-3.03 (m, 2H), 3.31 (dd, 1H), 3.32-3.60 (masked signal, 1H), 3.60-3.66 (m, 1H), 3.73 (dd, 1H), 6.49 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 363 349 2.7 (d6-DMSO, 400 MHz) 2.99-3.05 (1H, m), 3.17-3.20 (2H, m), 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, d), 7.28 (1H, dd), 7.83 (3H, brs), 7.97 (1H, d), 8.54-8.60 (2H, m), 14.01 (1H, s) 364 419.18 3.62 H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm 365 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | | | | | | 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.95-3.03 (m, 2H), 3.31 (dd, 1H), 3.32-3.60 (masked signal, 1H), 3.60-3.66 (m, 1H), 3.73 (dd, 1H), 6.49 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm 363 349 2.7 (d6-DMSO, 400 MHz) 2.99-3.05 (1H, m), 3.17-3.20 (2H, m), 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, d), 7.28 (1H, dd), 7.83 (3H, brs), 7.97 (1H, d), 8.54-8.60 (2H, m), 14.01 (1H, s) 364 419.18 3.62 HNMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm 365 419.18 3.52 HNMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | 362 | 313.18 | 2.5 | | | 6.49 (dd, 1H), 7.30 (dd, 1H), 7.65 (dd, 1H), 7.89 (s, 2H), 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm (d6-DMSO, 400 MHz) 2.99-3.05 (1H, m), 3.17-3.20 (2H, m), 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, d), 7.28 (1H, dd), 7.83 (3H, brs), 7.97 (1H, d), 8.54-8.60 (2H, m), 14.01 (1H, s) 8.64 419.18 3.62 H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm 365 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | | | | 2.17-2.25 (m, 1H), 2.62 (qn, 1H), 2.95-3.03 (m, 2H), 3.31 (dd, 1H), | | 8.59 (dd, 1H), 8.84 (dd, 1H) and 13.94 (s, 1H) ppm (d6-DMSO, 400 MHz) 2.99-3.05 (1H, m), 3.17-3.20 (2H, m), 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, d), 7.28 (1H, dd), 7.83 (3H, brs), 7.97 (1H, d), 8.54-8.60 (2H, m), 14.01 (1H, s) H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm 365 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | | | | | | 3.93 (2H, dd), 4.23 (2H, t), 6.52 (1H, d), 7.28 (1H, dd), 7.83 (3H, brs), 7.97 (1H, d), 8.54-8.60 (2H, m), 14.01 (1H, s) 3.64 419.18 3.62 H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm 365 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | | | | | | 7.83 (3H, brs), 7.97 (1H, d), 8.54-8.60 (2H, m), 14.01 (1H, s) 3.64 419.18 3.62 H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm 3.65 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | 363 | 349 | 2.7 | (d6-DMSO, 400 MHz) 2.99-3.05 (1H, m), 3.17-3.20 (2H, m), | | 364 419.18 3.62 H NMR (400.0 MHz, DMSO) d 0.86 (dd, 6H), 1.08-1.25 (m, 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | | | | | | 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), 2.50-2.51 (masked signal, 1H), 2.86 (t, 1H), 3.17-3.21 (m, 1H), 4.47 (d, 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm 365 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | 364 | 419.18 | 3.62 | | | 1H), 4.72 (d, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 8.00-8.05 (m, 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm
365 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | | | | 3H), 1.65-1.76 (m, 2H), 2.08-2.12 (m, 1H), | | 3H), 8.37 (dd, 1H), 8.61 (dd, 1H) and 14.01 (s, 1H) ppm
365 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H),
1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | | | | | | 365 419.18 3.52 H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), 1.03 (qn, 1H), 1.37-1.44 (m, 1H), 1.52 (qn, 1H), | | | | | | | 365 | 419.18 | 3.52 | H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 0.93 (qn, 1H), | | 1.72-1.70 (m, 1n), 1.67-1.71 (m, 1n), 2.00 (dd, 1n), 3.32-3.30 (m, | | | | | | | | | | 1.72-1.70
(III, 117), 1.07-1.91 (III, 117), 2.00 (III, 117), 3.32-3.30 (III, | | No. | M + 1
(obs) | RT
(min) | 1H-NMR | |-----|----------------|-------------|--| | | | | 1H), 3.41 (br m, 1H), 4.05 (d, 1H), 4.14 (d, 1H), 6.88 (d, 1H), 7.12 (dd, 1H), 7.81 (br s, 2H), 7.85 (d, 1H), 8.26 (dd, 1H), 8.44 (dd, 1H) and 13.84 (s, 1H) ppm | | 366 | 369.19 | 3.32 | H NMR (400.0 MHz, DMSO) d 0.89 (d, 6H), 1.10-1.17 (m, 2H), 1.20-1.28 (m, 1H), 1.70-1.77 (m, 2H), 2.08-2.12 (m, 1H), 2.44 (t, 1H), 2.79 (t, 1H), 3.23-3.25 (m, 1H), 4.33 (d, 1H), 4.57 (d, 1H), 6.97 (dd, 1H), 7.29 (dd, 1H), 7.72 (dd, 1H), 8.04 (d, 2H), 8.61 (dd, 1H), 8.66 (dd, 1H) and 14.02 (s, 1H) | | 367 | 369.19 | 3.29 | ppm H NMR (400.0 MHz, DMSO) d 0.88-0.95 (dd, 6H), 1.10-1.16 (m, 1H), 1.21-1.28 (m, 1H), 1.48-1.55 (m, 1H), 1.72-1.78 (m, 1H), 1.89-1.93 (m, 1H), 2.07-2.10 (m, 1H), 2.68 (dd, 1H), 3.31 (dd, 1H), 3.64 (br s, 1H), 4.11-4.20 (m, 2H), 7.02 (dd, 1H), 7.30 (dd, 1H), 7.73 (t, 1H), 7.98 (s, 2H), 8.61 (dd, 1H), 8.71 (dd, 1H) and 14.03 (s, 1H) ppm | | 368 | 313 | 2.4 | (d6-DMSO, 400 MHz) 1.51-1.61 (2H, m), 1.98 (2H, d),
3.02 (2H, t), 3.33 (1H, brs), 4.36 (2H, d), 7.01 (1H, dd), 7.33 (1H, dd), 7.69 (1H, t), 7.83 (3H, brs), 8.60 (1H, dd), 8.66 (1H, dd),
14.00 (1H, s) | | 369 | 327 | 2.45 | (d6-DMSO, 400 MHz) 1.49-1.59 (2H, m), 2.10 (2H, d), 2.60 (3H, d), 2.99 (2H, t), 3.29 (1H, brs), 4.40 (2H, d), 7.03 (1H, dd), 7.33 (1H, dd), 7.70 (1H, dd), 8.42 (3H, brs), 8.60 (1H, dd), 8.64 (1H, dd), 14.00 (1H, s) | | 370 | 379 | 3.62 | H NMR (400.0 MHz, DMSO) d 13.96 (brs, 1H), 8.67 (dd, J = 1.5, 8.1 Hz, 1H), 8.60 (dd, J = 1.6, 4.4 Hz, 1H), 7.68 (dd, J = 9.3, 10.1 Hz, 1H), 7.31 (dd, J = 4.5, 8.1 Hz, 1H), 7.01 (dd, J = 2.5, 9.3 Hz, 1H), 4.28 (dd, J = 3.0, 13.5 Hz, 1H), 3.31 (d, J = 3.7 Hz, 1H), 3.15-3.08 (m, 1H), 2.81 (dd, J = 10.9, 13.4 Hz, 1H), 2.02-1.66 (m, 4H), 1.36-1.19 (m, 3H) and 0.94-0.83 (m, 6H) ppm | | 371 | 405 | 8.02 | 1.25-1.35 (1H, m), 1.60-1.75 (1H, m), 1.80-2.00 (3H, m), 1.80-1.85 (1H, m), 1.95-3.15 (5H, m), 4.11-4.13 (1H, m), 4.50-4.52 (1H, m), 6.90 (1H, s), 7.35-7.53 (2H, m), 8.56 (1H, br s), 8.87 (1H, br s) | | 372 | 455 | 3.43 | NMR (MeOD) 1.30-1.40 (1H, m), 1.60-1.70 (1H, m)< 1.80-1.90 (2H, m), 1.95-2.00 (1H, m), 2.90 (3H, s), 2.92-3.04 (3H, m), 3.14 (1H, m), 4.27-4.30 (1H, d), 4.55-4.57 (1H, m), 6.92-6.94 (1H, d), 7.35-7.38 (1H, dd), 7.90-7.93 (1H, d), 8.44-8.47 (1H, d), 8.55-8.57 (1H, d), | | 373 | 385 | 7.59 | 0.11 0.17 (111, 4), 0.25 0.27 (111, 4), | | 374 | 385 | 7.55 | | | 375 | 385 | 7.89 | | | 376 | 385 | 7.93 | | | 377 | 383 | 7.53 | 1H NMR (CD3OD) 0.85-0.95 (6H, m), 1.50_1.75 (6H, m), 1.85_1.90 (2H, m), 2.75-2.89 (2H, m), 4.28-4.30 (1H, m), 4.60-4.63 (1H, m), 6.87-6.89 (1H, d), 7.29-7.33 (1h, d), 7.50-7.55 (1H, t), 8.57-8.59 (1H, d), 8.81-8.83 (1H, d). | | 378 | 397 | 8.3 | 1H NMR (CD3OD) 0.84-0.86 (3H, t), 0.91-0.92 (6H, d), 1.29-1.85 (2H, m), 1.41-1.46 (1H, m), 1.52-1.56 (1H, m), 1.66-1.70 (1H, m), 1.84-1.97 (3H, m), 2.17 (1H, s), 2.50 (1H, s), 2.86-3.00 (2H, m), 4.26-4.32 (2H, m), 6.88-6.90 (1H, d), 7.29-7.32 (1H, d), 7.51-7.56 (1H, t), 8.58-8.59 (1H, d), 8.80-8.82 (1H, d). | | 379 | 397 | 8.78 | 1H NMR (MeOD) 0.70-0.74 (3H, f), 0.89-0.92 (6H, d), 1.31-1.39 (2H, m), 1.72-1.90 (4H, m), 2.18 (1H, s), 2.50 (1H, s), 2.94-3.01 (2H, m), 4.17-4.20 (1H, d), 4.57-4.60 (1H, d), 6.86-6.89 (1H, d), 7.31-7.33 (1H, d), 7.54-7.57 (1H, t), 8.57-8.58 (1H, d), 8.74-8.76 (1H, d). | | 380 | 383 | 6.97 | 1H NMR (CD3OD) 0.68-0.72 (1H, m), 1.22-1.29 (6H, d), 3.15-3.65 (5H, masked), 4.46-4.49 (1H, m), 4.62-4.65 (1H, m), 7.04-7.07 (1H, d), 7.32-7.35 (1H, dd), 7.64-7.68 (1H, t), 8.60-8.61 (1H, d), 8.75-8.78 (1H, d). | | 381 | 383 | 6.68 | 1H NMR (CD3OD) 0.42-0.43 (2H, m), 1.05-1.20 (6H, m), 2.55-2.60 (1H, m), 2.85-3.05 (3H, m), 3.10-3.330 (2H, masked), 4.01-4.04 (1H, m), 4.30-4.33 (1H, m), 6.77-6.80 (1H, d), 7.18-7.21 (1H, d), 7.43-7.47 (1H, t), 8.46-8.48 (1H, d), 8.72-8.74 | | 382 | 383 | 7 | | | 383 | 383 | 6.65 | HAND (400 OATH DAGO) 11 74 1 70 (CAY) | | 384 | 393.18 | 2.87 | H NMR (400.0 MHz, DMSO) d 1.74-1.79 (m, 2H), 3.05-3.17 (m, 1H), 3.19 (d, 1H), 3.23 (s, 3H), 3.55 (br m, 1H), 3.62 (s, 1H), 4.48 (d, 1H), 4.80 (d, 1H), 7.09 (d, 1H), 7.31 (dd, 1H), 7.95 (d, 1H), 8.03 (d, 2H), 8.39 (dd, 1H), 8.59 (dd, 1H) and 14.00 (s, 1H) ppm | | 385 | 383.26 | 3.17 | 1.80 (d, 1H) ppm
H NMR (400.0 MHz, DMSO) d 0.72 (d, 3H), 0.92 (d, 3H),
1.01 (dd, 1H), 1.11 (s, 3H), 1.45 (dd, 1H), 1.72-1.78 (m, 1H),
1.82-1.88 (m, 2H), 2.74 (d, 1H), 2.99-3.12 (m, 2H), | | | | | TABLE 2-continued | |------------|------------|--------------|---| | | M + 1 | RT | | | No. | (obs) | (min) | 1H-NMR | | | () | () | | | 386 | 383 | 2.45 | 4.20-4.26 (m, 2H), 6.98 (dd, 1H), 7.33 (dd, 1H), 7.67 (t, 1H), 7.92 (d, 2H), 8.60 (dd, 1H), 8.68 (dd, 1H) and 14.00 (s, 1H) ppm H NMR (400.0 MHz, DMSO) d 13.99 (s, 1H), 8.71-8.68 (m, 1H), 8.60 (dd, J = 1.5, 4.5 Hz, 1H), 7.83 (brs, 2H), 7.68-7.62 (m, 1H), 7.30-7.25 (m, 1H), 6.94 (dd, J = 2.4, 9.2 Hz, 1H), | | 387 | 299 | 2.29 | 3.82-3.71 (m, 2H), 3.38-3.29 (m, 2H), 2.94-2.81 (m, 2H), 2.02-1.96 (m, 2H), 1.78-1.64 (m, 3H), 1.32-1.23 (m, 1H), 1.00-0.88 (m, 1H) and 0.92-0.78 (m, 6H) ppm (d6-DMSO, 400 MHz) 3.04 (1H, brs), 3.26 (2H, brs), 3.92 (2H, t), 4.22 (2H, t), 6.54 (1H, d), 7.35 (1H, dd), 7.72 (1H, t), | | 388 | 433.21 | 3.47 | 7.90 (3H, brs), 8.65 (1H, d), 8.87 (1H, d), 14.05 (1H, s), H NMR (400.0 MHz, DMSO) d 0.72 (d, 3H), 0.86 (d, 3H), 0.93 (s, 3H), 1.09 (dd, 1H), 1.24 (dd, 1H), 1.41-1.50 (m, 1H), 1.63-1.70 (m, 2H), 2.61 (dd, 1H), 2.97 (d, 1H), 3.34 (masked signal, 1H), 3.95 (d, 1H), 4.04-4.09 (m, 1H), 6.97 (d, 1H), 7.30 (dd, 1H), 7.89 (d, 1H), 8.40 (dd, 1H) and 8.58 (dd, 1H) | | 389 | 343.13 | 2.38 | ppm
H NMR (400.0 MHz, DMSO) d 1.73-1.90 (m, 2H),
3.03-3.12 (m, 1H), 3.14 (d, 1H), 3.24 (s, 3H), 3.54-3.61 (masked
signals, 2H), 4.31 (d, 1H), 4.65 (d, 1H), 7.00 (dd, 1H),
7.32 (dd, 1H), 7.63 (t, 1H), 8.01 (br s, 2H), 8.58 (dd, 1H), 8.68 (dd,
1H) and 13.98 (s, 1H) ppm | | 390 | 437 | 9.55 | 11) Alat 13.50 (s, 111) ppm
11 NMR (MeOD) 1.12 (3H, s), 1.19 (3H, s), 1.76-1.95 (5H, m), 2.81 (1H, s), 2.93-3.03 (2H, m), 4.19-4.22 (1H, d), 4.57-4.60 (1H, d), 6.86-6.89 (1H, d), 7.29-7.33 (1H, d), 7.51-7.56 (1H, t), 8.58-8.59 (1H, d), 8.75-8.78 | | 391 | 397 | 8 | 1H NMR (MeOD) 0.76-0.79 (3H, m), 0.87-0.93 (4H, m), 1.12-1.16 (1H, m), 1.31-1.43 (5H, m), 1.49-1.54 (1H, m), 1.66-1.75 (1H, m), 2.71-2.82 (2H, m), 2.98-3.00 (1H, m), 4.17-4.20 (1H, m), 4.42-4.47 (1H, m), 6.87-6.89 (1H, d), 7.28-7.31 (1H, | | 392 | 397 | 8.22 | d), 7.50-7.55 (1H, t), 8.57-8.59 (1H, m), 8.78-8.80 (1H, d). 1H NMR (MeOD) 0.85-0.89 (3H, m), 0.93-0.97 (3H, m), 1.14-1.19 (1H, m), 1.31-1.90 (7H, m), 2.71-2.75 (1H, m), 3.00-3.09 (2H, m), 4.15-4.18 (1H, m), 4.42-4.47 (1H, m), 6.92-6.95 (1H, d), 7.31-7.34 (1H, d), 7.52-7.57 (1H, t), 8.57-8.59 (1H, | | 202 | 127 | 2 67 | m), 8.78-8.80 (1H, d). | | 393
394 | 437
437 | 3.67
9.44 | | | 395 | 329.2 | 2.42 | H NMR (400.0 MHz, DMSO) d 2.70 (m, 1H), 2.91 (m, 1H), | | 396 | 416 | 4.46 | 3.01 (m, 2H), 3.70 (m, 2H), 4.12 (m, 3H), 6.97 (m, 1H), 7.31 (m, 1H), 7.73 (m, 1H), 8.59 (m, 1H), 8.68 (m, 1H) and 14.00 (br s, 1H) ppm H NMR (400.0 MHz, DMSO) d 13.96 (s, 1H), 8.59 (dd, J = 1.6, | | | | | 4.5 Hz, 1H), 8.44 (dd, J = 1.6, 8.1 Hz, 1H), 7.95 (d, J = 9.1 Hz, 1H), 7.30 (dd, J = 4.5, 8.1 Hz, 1H), 6.98-6.94 (m, 1H), 5.77-5.71 (m, 2H), 4.05 (s, 2H), 3.70 (d, J = 12.7 Hz, 1H), 3.53 (d, J = 12.7 Hz, 1H), 1.73 (q, J = 6.4 Hz, 1H), 1.37-1.25 (m, 2H), 1.02 (s, 3H) and 0.90-0.86 (m, 6H) ppm | | 397 | 435 | 3.37 | (400 MHz, DMSO) 0.89-0.94 (6H, m), 1.42 (1H, dd), 1.53 (1H, dd), 1.71-1.88 (1H, m), 2.61 (1H, d), 2.71 (1H, d), 3.55-3.77 (6H, m), 6.97 (1H, d), 7.27-7.30 (1H, m), 7.96 (1H, d), 8.42-8.45 (1H, m), 8.57-8.59 (1H, m). | | 398 | 406.16 | 2.88 | H NMR (400.0 MHz, DMSO) d 1.86 (d, 2H), 2.20-2.28 (m, 2H), 3.47 (t, 2H), 4.32 (d, 2H), 7.08 (d, 1H), 7.32 (dd, 1H), 7.77 (s, 1H), 7.93 (s, 1H), 8.01 (d, 1H), 8.36-8.45 (m, 3H), 8.60 (dd, 1H) and 13.99 (s, 1H) ppm | | 399 | 356.29 | 2.5 | H NMR (400.0 MHz, DMSO) d 1.90 (d, 2H), 2.25-2.32 (m, 2H), 3.41 (t, 2H), 4.13 (d, 2H), 7.02 (dd, 1H), 7.34 (dd, 1H), 7.71 (dd, 1H), 7.79 (s, 1H), 7.94 (s, 1H), 8.41 (s, 2H), | | 400 | 395 | 3.24 | 8.60 (dd, 1H), 8.66 (dd, 1H) and 14.01 (s, 1H) ppm
H NMR (400.0 MHz, DMSO) d 14.01 (brs, 1H), 8.72 (dd, J = 1.5,
8.1 Hz, 1H), 8.60 (dd, J = 1.5, 4.5 Hz, 1H), 7.68-7.63 (m,
1H), 7.31 (dd, J = 4.5, 8.1 Hz, 1H), 6.96 (dd, J = 2.5, 9.2 Hz,
1H), 4.26 (s, 1H), 3.72 (d, 1H), 3.60-3.59 (m, 2H), 3.47 (d,
1H), 3.02 (dd, J = 4.3, 7.5 Hz, 1H), 2.23-2.18 (m, 1H), | | 401 | 445 | 3.51 | Hy, 3.62 (dg, 3 – 4.5, 1.8), 1.65–1.58 (m, 1H), 1.48 (dd, J = 6.5, 14.3 Hz, 1H), 1.00 (d, J = 6.6 Hz, 3H) and 0.86 (d, J = 6.6 Hz, 3H) ppm H NMR (400.0 MHz, DMSO) d 13.97 (s, 1H), 8.59 (dd, J = 1.5, 4.5 Hz, 1H), 8.46 (dd, J = 1.4, 8.1 Hz, 1H), 7.95 (d, J = 9.2 Hz, 1H), 7.29 (dd, J = 4.5, 8.1 Hz, 1H), 7.02 (d, J = 9.1 Hz, 1H), 3.82 (d, 1H), 3.64–3.30 (m, 3H), 3.07 (d, J = 4.8 Hz, 1H), 2.16 (m, 1H), 1.91 (m, 2H), 1.52–1.48 (m, 2H), | | 402 | 477.28 | 3.55 | 0.96 (d, J = 6.6 Hz, 3H) and 0.84 (d, J = 6.6 Hz, 3H) ppm
H NMR (400.0 MHz, DMSO) d 0.72 (dd, 6H), 1.44-1.54 (m,
2H), 1.64-1.72 (m,
1H), 1.91-1.94 (m, 2H), 3.49-3.87 (m, | | | M + 1 | RT | | |-----|--------|-------|--| | No. | (obs) | (min) | 1H-NMR | | | | | 6H), 4.07 (q, 2H), 7.08 (d, 1H), 7.29 (dd, 1H), 8.00 (d, 1H), 8.14 (s, 2H), 8.47 (dd, 1H), 8.60 (dd, 1H) and 14.02 (s, 1H) | | 403 | 407 | 3 | ppm (400 MHz, DMSO) 0.78-0.82 (3H, m), 1.51-1.56 (1H, m), 1.63-1.69 (1H, m), 2.61-2.76 (2H, m), 3.56-3.76 (6H, m), 6.98 (1H, d), 7.29 (1H, dd), 7.97 (1H, d), 8.42 (1H, d), 8.58 (1H, dd). | | 404 | 421 | 3.2 | (400 MHz, DMSO) 0.85 (3H, t), 1.15-1.32 (2H, m), 1.43-1.51 (1H, m), 1.54-1.60 (1H, m), 2.63-2.68 (2H, m), 3.54-3.75 (6H, m), 6.96 (1H, d), 7.28 (1H, dd), 7.96 (1H, d), 8.43 (1H, dd), | | 405 | 487 | 3.77 | 8.57 (1H, d).
0.96 (6H, dd), 1.60-1.66 (1H, m), 1.85-1.93 (2H, m),
1.98 (2H, brs), 2.08 (2H, s), 3.24-3.34 (2H, m), 3.68 (1, brs),
4.43 (1H, d), 5.03 (1H, d), 7.09 (1H, d), 7.27 (1H, dd), 8.00 (1H, d), | | 406 | 401 | 3.57 | 8.36 (1H, d), 4.41 (3H, brs), 8.60 (1H, dd), 14.03 (1H, s)
H NMR (400.0 MHz, DMSO) d 13.99 (s, 1H), 8.59 (dd, J = 1.5,
4.5 Hz, 1H), 8.44-8.41 (m, 1H), 7.31-7.27 (m, 1H), 7.06 (dd,
J = 9.3, 11.0 Hz, 1H), 4.63-4.29 (m, 2H), 3.83 (brs, 1H), | | 407 | 351 | 3.28 | 3.41-2.73 (d, 3H), 2.13-1.28 (m, 5H) and 0.95 (m, 3H) ppm
H NMR (400.0 MHz, DMSO) d 13.99 (s, 1H), 8.69 (dd, J = 1.5,
8.1 Hz, 1H), 8.59 (dd, J = 1.6, 4.5 Hz, 1H), 7.70-7.65 (m,
1H), 7.33-7.29 (m, 1H), 7.03-6.96 (m, 1H), 4.49-4.13 (m,
2H), 3.40-2.64 (m, 3H), 2.20-1.31 (m, 5H) and 1.01 (m, 3H) | | 408 | 397 | 8.07 | ppm 1H (MeOD) 1.099 (9H, s)<, 1.60-1.70 (1H, m), 1.80-1.90 (1H, m), 1.95-2.10 (2H, m), 2.15-2.25 (1H, m), 2. 2.80 (1H, s), 2.89 (3H, s), 2.90-2.98 (2H, m), 4.30-4.35 (1H, m), 4.50-4.55 (1H, m), 6.96-6.97 (1H, d), 7.31-7.34 (1H, dd), 7.55-7.60 (1H, m), 8.50 (6H, s), 8.50 (60 (1H, d), 7.37, 8.75 (1H, m), 8.55 (6H, s), 8.50 (60 (1H, d), 7.37, 8.75 (1H, m)) | | 409 | 397 | 8.45 | 8.55 (6H, s), 8.59-8.60 (1H, d), 8.73-8.75 (1H, m). | | 410 | 449.26 | 3.18 | (DMSO) 0.63 (d, 3H), 0.85 (d, 3H), 1.16 (dd, 1H), 1.27 (dd, 1H), 1.87-1.67 (m, 3H), 2.93 (d, 1H), 3.09-3.03 (m, 1H), 3.64-3.43 (3H, masked signal), 4.31 (d, 1H), 4.35 (d, 1H), 5.44 (br s, 1H), 7.05 (d, 1H), 7.31 (dd, 1H), 7.83 (d, 2H), 7.99 (d, 1H), 8.37 (dd, 1H), 8.60 (dd, 1H), 13.99 (s, 1H). | | 411 | 449.26 | 3.29 | (DMSO) 0.94 (dd, 6H), 1.26-1.24 (m, 1H), 1.81-1.77 (m, 2H), 1.98-1.88 (m, 2H), 3.02 (d, 1H), 3.29-3.17 (m, 2H), 3.52 (d, 1H), 3.66 (d, 1H), 4.33 (d, 1H), 4.42 (d, 1H), 5.28 (s, 1H), 7.03 (d, 1H), 7.28 (dd, 1H), 7.77 (d, 2H), 7.96 (d, 1H), | | 412 | 377 | 3.15 | 8.43 (dd, 1H), 8.61 (dd, 1H), 14.02 (s, 1H).
(400 MHz, DMSO) 1.15-1.23 (2H, m), 1.55-1.63 (1H, brs),
1.77-1.87 (2H, m), 3.02 (2H, t), 4.53 (2H, brd), 7.11 (1H, s),
7.36 (1H, dd), 7.54 (1H, s), 8.60 (1H, dd), 8.76 (1H, dd). | | 413 | 405 | 3.38 | (11. dd), 7.34 (11., 30.50 (11., dd), 40.6 (11., dd), (1.6 (11., dd), d | | 414 | 427.3 | 3.02 | 1H NMR (400.0 MHz, DMSO) d 0.90-0.98 (m, 9H), 1.83-1.89 (m, 1H), 2.10 (s, 3H), 3.50-3.56 (m, 2H), 3.76-3.92 (m, 3H), 4.14 (dd, 1H), 4.32 (s, 1H, OH), 4.63 (t, 1H), 6.75 (dd, 0.85H), 6.83 (dd, 0.15H), 7.28 (dd, 1H), 7.66 (dd, 1H), | | 415 | 387 | 3.5 | 8.59 (dd, 1H), 8.72 (dd, 1H) and 13.96 (s, 1H, NH) ppm
H NMR (400.0 MHz, DMSO) d 13.97 (s, 1H), 8.59 (dd, J = 1.5,
4.5 Hz, 1H), 8.39 (dd, J = 1.6, 8.1 Hz, 1H), 7.98 (d, J = 9.2 Hz,
1H), 7.31 (dd, J = 4.5, 8.1 Hz, 1H), 7.07 (d, J = 9.1 Hz, 1H),
4.49 (m, 2H), 4.21 (s, 1H), 3.17 (dd, J = 1.9, 26.0 Hz, 2H),
2.01 (s, 2H), 1.98 (s, 2H), 1.65-1.57 (m, 2H) and 1.39 (s, 3H) | | 416 | 337 | 3.16 | ppm
H NMR (400.0 MHz, DMSO) d 13.96 (s, 1H), 8.67 (dd, J = 1.5,
8.1 Hz, 1H), 8.59 (dd, J = 1.5, 4.5 Hz, 1H), 7.68 (dd, J = 9.3,
10.1 Hz, 1H), 7.33 (dd, J = 4.5, 8.1 Hz, 1H), 7.02 (dd, J = 2.5,
9.2 Hz, 1H), 4.33 (m, 2H), 3.79 (s, 1H), 3.10 (dd, J = 2.3, 25.7 Hz,
2H), 2.04 (m, 2H), 1.68-1.61 (m, 2H) and 1.41 (s, 3H) | | 417 | 379 | 3.66 | ppm
H NMR (400.0 MHz, DMSO) d 13.98 (s, 1H), 8.68 (dd, J = 1.5,
8.1 Hz, 1H), 8.59 (dd, J = 1.5, 4.5 Hz, 1H), 7.68 (dd, J = 9.4,
10.1 Hz, 1H), 7.33 (dd, J = 4.5, 8.1 Hz, 1H), 7.01 (dd, J = 2.5,
9.2 Hz, 1H), 4.35 (m, 2H), 3.55 (s, 1H), 3.09 (dd, J = 1.8, 25.7 Hz,
2H), 2.08 (m, 2H), 1.90 (t, J = 6.6 Hz, 1H), 1.67-1.60 (m, | | 418 | 457.3 | 3.55 | 2H), 1.55 (d, J = 6.4 Hz, 2H) and 1.01 (d, J = 6.6 Hz, 6H) ppm
H NMR (400.0 MHz, DMSO) d 0.90-0.96 (m, 9H),
1.09-1.18 (m, 3H), 1.86 (dt, 1H), 3.46-4.25 (m, 9H), 4.38 (s, 1H, OH),
6.76 (t, 1H), 7.28 (dd, J = 4.5, 8.1 Hz, 1H), 7.65 (dd, J = 9.4,
10.0 Hz, 1H), 8.59 (dd, J = 1.5, 4.5 Hz, 1H), 8.72 (dd, J = 1.5, | | 419 | 419 | 3.6 | (400 MHz, 1M), 6.79 (dd, 3 – 1.3, 4.5 Hz, 1H), 8.72 (dd, 3 – 1.5), 8.1 Hz, 1H) and 13.96 (s, 1H, NH) ppm (400 MHz, DMSO) 0.85-0.89 (6H, m), 1.11-1.36 (2H, m), 1.61-1.67 (1H, m), 1.70-1.78 (3H, m), 3.09 (1H, brs), 3.47 (1H, dd), | | | M + 1 | RT | | |-----|--------|-------|---| | No. | (obs) | (min) | 1H-NMR | | | | | 3.65 (1H, dt), 3.85-3.92 (2H, m), 7.06 (1H, s), 7.33 (1H, dd), | | | | | 7.52 (1H, s), 8.61 (1H, dd), 8.77 (1H, dd). | | 420 | 363 | 3.2 | (400 MHz, DMSO) 1.77-1.86 (1H, m), 2.13-2.19 (1H, m), 2.41 (1H, qn), 2.67-2.73 (2H, m), 3.60 (2H, brs), 3.73 (2H, brs), | | | | | 6.64 (1H, s), 7.35 (1H, dd), 7.51 (1H, s), 8.59 (1H, dd), | | 421 | 260 | 7.67 | 8.90 (1H, dd). | | 421 | 369 | 7.67 | (CD3OD) 1.07 (9H, s), 1.95-2.03 (1H, m), 2.15-2.20 (1H, m), 2.65-2.75 (2H, m), 3.50-3.55 (1H, m), 3.75-3.85 (2H, m), | | | | | 6.50-6.55 (1H, d), 7.29-7.32 (1H, dd), 7.45-7.50 (1H, t), | | 422 | 369 | 8.03 | 8.55-8.57 (1H, d), 8.96-8.98 (1H, d)
(CD3OD) 1.07 (9H, s), 2.03-2.20 (2H, m), 2.65-2.75 (2H, m), | | .22 | 505 | 0.05 | 3.40-3.50 (2H, m), 3.75-3.85 (2H, m), 6.50-6.55 (1H, d), | | | | | 7.29-7.32 (1H, dd), 7.45-7.50 (1H, t), 8.55-8.57 (1H, d),
8.96-8.98 (1H, d) | | 423 | | | 6.50-6.56 (111, d) | | 424 | 485.4 | 3.73 | 1H NMR (400.0 MHz, DMSO) d 0.87-0.97 (m, 9H),
1.28-1.36 (m, 9H), 1.83-1.87 (m, 1H), 3.51-3.76 (m, 4H), | | | | | 3.94-4.25 (m, 3H), 4.34 (d, 1H, OH), 6.77 (dd, 1H), 7.28 (dd, 1H), | | | | | 7.64 (d, J = 9.9 Hz, 1H), 8.59 (dd, 1H), 8.72 (t, 1H) and | | 425 | | | 13.95 (s, 1H, NH) ppm | | 426 | 368 | 6.85 | (CD3OD) 0.97-0.98 (6H, d), 1.31 (3H, s), 1.95-2.05 (1H, m), | | | | | 3.30-3.40 (1H, masked), 3.40-3.45 (2H, m), 3.50-3.55 (2H, m), 4.58-4.60 (1H, m), 5.08-5.11 (1H, m), 7.31-7.35 (1H, dd), | | | | | 8.30 (1H, s), 8.60-8.61 (1H, d), 8.76 (1H, s), 8.81-8.83 (1H, d). | | 427 | 419.31 | 3.3 | H NMR (400.0 MHz, DMSO) d 0.77 (t, 3H), 0.83 (t, 3H), 1.15-1.24 (m, 1H), 1.36-1.50 (m, 3H), 1.81-1.89 (m, 1H), | | | | | 1.94-1.99 (m, 1H), 3.38 (d, 2H), 3.49-3.55 (m, 1H), 3.86 (d, 1H), | | | | | 3.96-4.00 (m, 1H), 7.05 (d, 1H), 7.29 (dd, 1H), 7.94 (d, 1H),
8.00 (d, 2H), 8.39 (dd, 1H), 8.59 (dd, 1H) and 13.98 (s, 1H) | | | | | ppm | | 428 | 391.25 | 2.98 | H NMR (400.0 MHz, DMSO) d 0.89 (s, 3H), 1.08 (s, 3H), 1.71 (ddd, 1H), 1.86-1.90 (m, 1H), 2.95 (d, 1H), 3.09 (td, 1H), | | | | | 3.16-3.20 (m, 1H), 4.14 (d, 1H), 4.53 (d, 1H), 7.08 (d, 1H), | | | | | 7.31 (dd, 1H), 7.93-7.95 (m, 3H), 8.37 (dd, 1H), 8.60 (dd, 1H) and 13.98 (s, 1H) ppm | | 429 | 401 | 3.72 | (d6-DMSO, 400 MHz) 0.96 (6H, d), 1.83-1.93 (3H, m), | | | | | 4.18 (1H, d), 4.50 (1H, d), 6.63 (1H, d), 7.30 (1H, dd), 8.03 (1H, d), 8.53 (1H, dd), 8.58 (1H, dd), 14.00 (1H, brg) | | 430 | 419 | 3.34 | 8.53 (1H, dd), 8.58 (1H, dd), 14.00 (1H, brs)
(d6-DMSO, 400 MHz) 0.88 (6H, d), 1.59-1.66 (1H, m), | | | | | 1.90 (2H, d), 3.90 (2H, d), 4.33 (2H, d), 6.53 (1H, d), 7.21 (1H, brs), | | | | | 7.29 (1H, dd), 7.50 (1H, brs), 7.93 (1H, d), 8.52 (1H, dd), 8.58 (1H, dd), 13.97 (1H, s) | | 431 | 348 | 2.65 | (400 MHz, DMSO) 1.70 (2H, dq), 1.85-1.89 (2H, m), 2.63 (2H, | | | | | dt), 2.98 (1H, tt), 3.07 (2H, brd), 7.35 (1H, dd), 7.54 (1H, d), 8.28 (1H, d), 8.53 (1H, dd), 8.61 (1H,
dd). | | 432 | 377 | 3.2 | (400 MHz, DMSO) Mixture of rotamers. Data given for major: | | | | | 1.25-1.29 (2H, m), 1.48-1.57 (2H, m), 1.78-1.86 (2H, m),
2.80 (1H, dd), 2.94-2.99 (1H, m), 3.00-3.11 (1H, m), 4.38 (1H, brd), | | | | | 4.56 (1H, brd), 7.07 (1H, s), 7.32 (1H, dd), 7.52 (1H, s), | | 433 | 349 | 2.9 | 8.58 (1H, dd), 8.67 (1H, dd).
(400MH, DMSO) Mixture of rotamers. Data for major: | | | | | 2.75-2.83 (2H, m), 3.88 (2H, dd), 4.18 (2H, t), 6.57 (1H, s), | | 434 | 447.32 | 3.55 | 7.32 (1H, dd), 7.54 (1H, s), 8.58 (1H, dd), 8.87 (1H, dd).
1H NMR (400 MHz, DMSO) d 13.97 (s, 1H), 8.60 (dd, 1H), | | | | | 8.38 (dd, 1H), 7.96 (d, 1H), 7.92 (s, 2H), 7.29 (dd, 1H), | | | | | 7.04 (d, 1H), 4.09-3.99 (m, 2H), 3.94 (d, 2H), 3.48-3.24 (m, 3H), 1.99-1.88 (m, 1H), 1.88-1.76 (m, 1H), 1.76-1.64 (m, 1H), | | | | | 1.59 (q, 2H), 1.33 (dd, 1H), 1.09 (dd, 1H), 0.93-0.80 (m, 6H), | | 435 | 419.31 | 3.25 | 0.71 (d, 3H).
H NMR (400.0 MHz, DMSO) d 0.68 (t, 3H), 1.00 (s, 3H), | | 155 | 117.51 | 3,23 | 1.05-1.27 (m, 4H), 1.78-1.88 (m, 2H), 2.90 (d, 1H), 3.17-3.23 (m, | | | | | 2H), 4.24 (d, 1H), 4.32 (d, 1H), 7.04 (d, 1H), 7.30 (dd, 1H), 7.96 (d, 3H), 8.36 (dd, 1H), 8.60 (dd, 1H) and 13.97 (s, 1H) | | | | | ppm | | 436 | 447.32 | 3.59 | H NMR (400.0 MHz, DMSO) d 0.78 (t, 3H), 0.96 (dd, 6H), | | | | | 1.19 (sextet, 1H), 1.33-1.48 (m, 3H), 1.77 (qn, 1H), 1.82-1.99 (m, 2H), 3.35 (d, 1H), 3.43-3.47 (m, 2H), 4.00-4.04 (m, 2H), | | | | | 7.06 (d, 1H), 7.28 (dd, 1H), 7.96 (d, 3H), 8.40 (dd, 1H), | | 437 | 401 | 7.3 | 8.60 (dd, 1H) and 13.99 (s, 1H) ppm (CD3OD) 0.74-0.75 (3H, d), 0.98-1.00 (3H, d), 1.15 (3H, s), | | | | | 1.96-1.99 (1H, m), 3.15-3.19 (1H, m), 3.22-3.38 (4H, m), | | | | | 4.41-4.43 (1H, m), 4.88-4.97 (1H, d), 7.03-7.06 (1H, d), 7.30-7.32 (1H, d), 7.81-7.84 (1H, d), 8.46-8.49 (1H, d), 8.59-8.61 (1H, d) | | 438 | 401 | 7.64 | (CD3OD) 0.90-0.95 (6H, m), 1.24 (3H, s), 1.82-1.86 (1H, m), | | | | | 3.07-3.13 (1H, m), 3.29-3.35 (2H, masked), 3.43-3.46 (2H, m), 4.45-4.48 (1H, m), 4.81-4.87 (1H, masked), 7.04-7.06 (1H, d), | | | | | (111, 111), 1101 1101 (111, 111aakeu), 1.107 1.100 (111, u), | | | | | | | No. | M + 1
(obs) | RT
(min) | 1H-NMR | |-------------|----------------|--------------|--| | | | | 7.29-7.32 (1H, d), 7.82-7.84 (1H, d), 8.47-8.50 (1H, d), | | 439 | 411.3 | 3.32 | 8.59-8.60 (1H, d)
1H NMR (400.0 MHz, DMSO) d 0.94 (d, 3H), 0.99 (d, 3H), | | | | | 1.36 (s, 3H), 1.97-2.07 (m, 1H), 3.03-3.16 (m, 3H), 3.65 (dd, | | | | | 1H), 3.72 (dd, 1H), 4.38 (d, 1H), 4.51 (d, 1H), 7.13 (dd, 1H), 7.35 (dd, 1H), 7.78 (t, 1H), 8.65 (d, 1H), 8.71 (d, 1H) and | | | | | 14.04 (bs, 1H, NH) ppm | | 44 0 | 298 | 2.3 | (400 MHz, DMSO) 1.71 (2H, dq), 1.87 (2H, brd), 2.65 (2H, dt), | | | | | 2.88-2.92 (1H, m), 3.08 (2H, brd), 7.35-7.39 (2H, m), 7.79 (1H, dd), 8.61 (1H, dd), 8.84 (1H, dd). | | 441 | 325 | 5 | (CD3OD) 1.69-1.79 (2H, m), 2.14-2.18 (2H, m), 3.12 | | | | | 3-18 (2H, m), 3.44-3.51 (1H, m), 4.59-4.62 (2H, m), 4.71 (2H, s), 6.96 (1H, s), 7.31-7.34 (1H, dd), 7.56 (1H, s), 8.56-8.58 (1H, | | | | | d), 8.88-8.91 (1H, dd). | | 442 | 362 | 8.59 | (CD3OD) 1.00-1.06 (6H, m), 1.50-1.80 (2H, m),
1.85-2.00 (1H, m), 3.20-3.60 (4H, m), 4.45-4.60 (2H, m), 4.80-4.90 (1H. | | | | | masked), 7.30 (1H, s), 7.32-7.36 (1H, dd), 7.83 (1H, s), | | | | | 8.58-8.60 (1H, d), 8.81-8.84 (1H, d). | | 443 | 311 | 4.9 | (CD3OD) 3.42 3-45 (4H, m), 3.96-3.99 (4H, m), 4.71 (2H, s), 6.97 (1H, s), 7.31-7.34 (1H, dd), 7.68 (1H, s), 8.55-8.57 (1H, | | | | | d), 8.89-8.91 (1H, dd). | | 444
445 | 403
403 | 7.72
7.47 | (S)/(R) stereochemistry | | 443 | 403 | 7.47 | 1H NMR (400 MHz, DMSO) d 13.99 (s, 1H), 8.77 (dd, J = 8.1, | | | | | 1.4 Hz, 1H), 8.60 (dd, J = 4.4, 1.5 Hz, 1H), 7.92 (dd, J = 12.1, | | | | | 9.8 Hz, 1H), 7.30 (dd, J = 8.1, 4.5 Hz, 1H), 4.14 (s, 1H),
4.04 (d, J = 7.9 Hz, 1H), 3.77 (d, J = 8.6 Hz, 1H), 3.09 (d, J = 8.9 Hz, | | | | | 1H), 2.84 (d, J = 9.1 Hz, 2H), 2.74 (d, J = 7.4 Hz, 2H), | | | | | 1.81 (dt, J = 13.5, 6.8 Hz, 2H), 1.05 (s, 3H), 0.87 (dd, J = 23.8, 6.7 Hz, 6H). | | 446 | 429 | 3.92 | H NMR (400.0 MHz, DMSO) d 13.97 (s, 1H), 8.59 (dd, J = 1.6, | | | | | 4.4 Hz, 1H), 8.40 (dd, J = 1.5, 8.1 Hz, 1H), 7.98 (d, J = 9.2 Hz, 1H), 7.31 (dd, J = 4.5, 8.1 Hz, 1H), 7.06 (d, J = 9.1 Hz, 1H), | | | | | 4.49 (d, 2H), 3.16 (t, J = 12.2 Hz, 2H), 2.05 (m, 2H), 1.88 (t, J = 6.6 Hz, | | | | | 1H), 1.63-1.53 (m, 4H) and 0.99 (d, J = 6.6 Hz, 6H) | | 447 | 405.31 | 3.2 | ppm
H NMR (400.0 MHz, DMSO) d 0.76 (t, 3H), 0.99 (s, 3H), | | | | | 1.15 (sextet, 1H), 1.39 (septet, 1H), 1.76-1.92 (m, 2H), 2.90 (d, | | | | | 1H), 3.18-3.24 (m, 2H), 4.23 (d, 1H), 4.32 (d, 1H), 7.05 (d, 1H), 7.30 (dd, 1H), 7.92-8.00 (m, 3H), 8.37 (dd, 1H), | | | | | 8.59 (dd, 1H) and 13.98 (s, 1H) ppm | | 448 | 409 | 9.09 | (CD3OD) 1.16-1.20 (3H, m), 1.80-2.05 (2H, m),
2.35-2.45 (1H, m), 2.75-2.80 (1H, m), 3.54-3.57 (1H, m), 3.68-3.88 (3H, | | | | | m), 4.07-4.10 (1H, m), 6.65-6.68 (1H, d), 7.31-7.34 (1H, d), | | 440 | 400 | 0.17 | 7.57-7.62 (1H, dd), 8.59-8.60 (1H, d), 8.80-8.82 (1H, d). (CD3OD) 1.15-1.20 (3H, m), 1.80-1.90 (1H, m), 2.0-2.10 (1H, | | 449 | 409 | 9.17 | m), 2.35-2.45 (1H, m), 2.60-2.70 (1H, m), 3.54-3.57 (1H, m), | | | | | 3.62-3.65 (1H, m), 3.82-3.88 (2H, m), 4.07-4.10 (1H, m), | | | | | 6.65-6.68 (1H, d), 7.34-7.37 (1H, d), 7.59-7.64 (1H, dd),
8.60-8.62 (1H, d), 8.80-8.82 (1H, d). | | 450 | 443 | 3.87 | H NMR (400.0 MHz, DMSO) d 13.96 (s, 1H), 8.67 (d, J = 9.5 Hz, | | | | | 1H), 8.42-8.37 (m, 1H), 7.96-7.92 (m, 1H), 7.30-7.32 (m, 1H), 7.30-7.32 (m, 1H), 7.08-6.88 (m, 1H), 4.62 (d, L = 12.8 Hz, 1H) | | | | | 7.30-7.22 (m, 1H), 7.08-6.88 (m, 1H), 4.62 (d, J = 12.8 Hz, 1H),
4.36 (d, 1H), 4.04-3.90 (m, 1H), 3.45-3.26 (m, 1H), 3.09 (dd, J = 2.4, | | | | | 25.4 Hz, 1H), 2.76-2.44 (m, 2H), 1.87 (dd, J = 3.3, 13.1 Hz, | | 451 | 367 | 6.74 | 1H) and 1.75-0.69 (m, 11H) ppm | | 452 | 393 | 3.65 | H NMR (400.0 MHz, DMSO) d 13.95 (s, 1H), 8.71-8.68 (m, | | | | | 1H), 8.60 (dd, J = 1.5, 4.5 Hz, 1H), 7.67-7.60 (m, 1H), 7.30-7.23 (m, 1H), 6.98-6.91 (m, 1H), 4.51 (dd, J = 2.6, 13.1 Hz, | | | | | 1H), 4.23 (d, 1H), 3.86-3.70 (m, 1H), 3.01-2.94 (m, 1H), | | 453 | 339 | 2.18 | 2.78-2.50 (m, 2H) and 1.90-0.75 (m, 13H) ppm | | 454 | 397 | 2.48 | | | 455
456 | 397 | 2.52 | (d6 DMSO 400 MHz) 0.07 (6H d) 1.80 (1H bm) 4.00 (2H | | 456 | 351 | 3.63 | (d6-DMSO, 499 MHz) 0.97 (6H, d), 1.89 (1H, brs), 4.09 (2H, d), 4.42 (2H, d), 6.58 (1H, dd), 7.30 (1H, dd), 7.71 (1H, dd), | | 455 | 255 | • • • | 8.58 (1H, dd), 8.77 (1H, dd), 13.97 (1H, brs) | | 457 | 355 | 3.04 | (d6-DMSO, 400 MHz) 0.90 (6H, d), 1.65 (2H, d),
1.74-1.80 (1H, m), 3.21-3.26 (2H, m), 3.80 (2H, d), 4.02 (2H, d), | | | | | 6.49 (1H, dd), 7.28 (1H, dd), 7.66 (1H, dd), 7.89 (1H, brs), | | 150 | 367 | 2.66 | 8.59 (1H, dd), 8.80 (1H, dd), 13.97 (1H, brs)
H NMR (400.0 MHz, DMSO) d 14.03 (s, 1H), 8.68 (dt, J = 8.0, | | 458 | 367 | 2.66 | H NMR (400.0 MHz, DMSO) d 14.03 (s, 1H), 8.08 (dt, J = 8.0, 2.3 Hz, 1H), 8.62-8.58 (m, 1H), 7.69-7.60 (m, 1H), | | | | | 7.37-7.31 (m, 1H), 7.01-6.96 (m, 1H), 4.30-4.20 (m, 1H), | | | | | 4.00-3.82 (m, 1H), 3.42-2.92 (m, 2H), 2.77-2.43 (m, 3H) and 2.12-1.33 (m, 5H) ppm | | | | | 2.12-1.55 (m, 511) ppm | | TABLE 2-continued | | | | |-------------------|----------------|-------------|--| | No. | M + 1
(obs) | RT
(min) | 1H-NMR | | 459 | 417 | 3.01 | 1H NMR (400 MHz, DMSO) d 13.96 (s, 1H), 8.59 (dd, J = 4.4, | | | | | 1.4 Hz, 1H), 8.40 (dd, J = 8.1, 1.3 Hz, 1H), 7.94 (d, J = 9.2 Hz, | | | | | 1H), 7.38-7.25 (m, 2H), 7.11-6.98 (m, 1H), 4.36 (t, J = 11.7 Hz, 3H), 3.72-3.54 (m, 1H), 3.42 (td, J = 9.3, 4.2 Hz, 1H), | | | | | 3.11 (ddd, J = 23.3, 9.3, 4.2 Hz, 2H), 2.81 (dd, J = 13.3, 9.9 Hz, | | | | | 1H), 2.73-2.54 (m, 3H), 1.95 (ddd, J = 15.9, 14.7, 5.7 Hz, | | 460 | 417 | 3.01 | 3H), 1.53-1.33 (m, 4H), 1.31-1.20 (m, 4H).
H NMR (400.0 MHz, DMSO) d 13.95 (s, 1H), 8.59 (dd, J = 1.5, | | | | | 4.5 Hz, 1H), 8.45-8.38 (m, 1H), 7.96 (dd, J = 9.1, 26.0 Hz, | | | | | 1H), 7.30 (dd, J = 4.5, 8.1 Hz, 1H), 7.07-7.03 (m, 1H), | | | | | 4.05-3.90 (m, 3H), 3.49-3.42 (m, 1H), 3.27-3.11 (m, 1H), 2.60-2.50 (m, 2H), 1.76-1.40 (m, 3H) and 1.28-1.17 (m, 2H) ppm | | 461 | 431.3 | 3.3 | H NMR (400.0 MHz, DMSO) d 0.98-1.10 (m, 1H), | | | | | 1.17-1.51 (m, 9H), 1.55-1.62 (m, 1H), 1.67-1.74 (m, 1H), 2.55 (dd, | | | | | 1H), 3.00 (d, 1H), 3.30-3.35 (m, 3H), 4.03-4.06 (m, 1H), | | | | | 4.35 (d, 1H), 6.99 (d, 1H), 7.29 (dd, 1H), 7.87 (d, 1H),
8.48 (dd, 1H) and 8.58 (dd, 1H) ppm | | 462 | 433.31 | 3 | H NMR (400.0 MHz, DMSO) d 1.12 (t, 2H), 1.41-1.54 (m, | | | | | 3H), 1.70-1.82 (m, 2H), 2.59 (dd, 1H), 3.25 (d, 1H), | | | | | 3.32-3.35 (masked signal, 1H), 3.39-3.46 (m, 3H), 3.51-3.57 (m, | | | | | 2H), 4.00-4.03 (m, 1H), 4.40 (d, 1H), 7.04 (d, 1H), 7.31 (dd, 1H), 7.88 (d, 1H), 8.46 (dd, 1H) and 8.59 (dd, 1H) ppm | | 463 | 391 | 2.48 | H NMR (400.0 MHz, DMSO) d 13.97 (s, 1H), 8.59 (dd, J = 1.5, | | | | | 4.5 Hz, 1H), 8.39 (dd, J = 1.5, 8.1 Hz, 1H), 7.94 (d, J = 9.2 Hz, | | | | | 1H), 7.81 (s, 2H), 7.29 (dd, J = 4.5, 8.1 Hz, 1H), 7.02 (d, J = 9.1 Hz, 1H), 3.98 (dd, J = 5.0, 9.0 Hz, 2H), 3.52-3.46 (m, | | | | | 2H), 2.85-2.74 (m, 2H), 1.62-1.40 (m, 4H) and 1.10 (s, 3H) | | | | | ppm | | 464 | 417.3 | 3.22 | H NMR (400.0 MHz, DMSO) d 1.22-1.27 (m, 2H), | | | | | 1.30-1.39 (m, 1H), 1.53-1.62 (m, 6H), 1.68-1.74 (m, 1H), 2.71 (dd, 1H), 3.02 (d, 1H), 3.24-3.31 (m, 3H), 4.01 (d, 1H), | | | | | 4.08-4.11 (m, 1H), 6.96 (d, 1H), 7.28 (dd, 1H), 7.87 (d, 1H), 8.38 (dd, | | 465 | 40.5 | 2.56 | 1H) and 8.58 (dd, 1H) ppm | | 465 | 405 | 2.56 | H NMR (400.0 MHz, DMSO) d 13.97 (d, J = 6.7 Hz, 1H),
8.63-8.55 (m, 1H), 8.44-8.38 (m, 1H), 7.94 (dd, J = 6.3, 9.2 Hz, | | | | | 1H), 7.79-7.71 (m, 2H), 7.30-7.25 (m, 1H),
7.03-7.00 (m, | | | | | 1H), 4.45 (d, J = 11.1 Hz, 1H), 4.30 (d, 1H), 4.11-4.03 (m, | | | | | 1H), 3.39-3.30 (m, 1H), 3.15-3.03 (m, 1H), 2.92-2.68 (m, 2H), 2.08-1.82 (m, 1H), 1.78-1.15 (m, 4H) and | | | | | 0.92-0.81 (m, 3H) ppm | | 466 | 433 | 2.77 | H NMR (400.0 MHz, DMSO) d 13.97 (s, 1H), 8.59 (dd, J = 1.6, | | | | | 4.4 Hz, 1H), 8.39 (dd, J = 1.5, 8.1 Hz, 1H), 7.95 (d, J = 9.1 Hz, | | | | | 1H), 7.75 (s, 2H), 7.29 (dd, J = 4.5, 8.1 Hz, 1H), 7.01 (d, J = 9.0 Hz, 1H), 3.80-3.69 (m, 4H), 2.94 (d, J = 5.7 Hz, 2H), | | | | | 1.79-1.37 (m, 7H) and 0.94 (d, J = 6.7 Hz, 6H) ppm | | 467 | 383 | 2.55 | H NMR (400.0 MHz , DMSO) d 13.95 (s, 1H) , $8.68 \text{ (dd, J} = 1.6$, | | | | | 8.1 Hz, 1H), 8.59 (dd, J = 1.5, 4.5 Hz, 1H), 7.73 (s, 2H),
7.65 (t, J = 9.7 Hz, 1H), 7.31 (dd, J = 4.5, 8.1 Hz, 1H), 6.96 (dd, J = 2.5, | | | | | 9.3 Hz, 1H), 3.62-3.60 (m, 4H), 2.94 (d, J = 5.8 Hz, 2H), | | | | | 1.78-1.52 (m, 5H), $1.44-1.36$ (m, 2H) and 0.95 (d, $J = 6.6$ Hz, | | 460 | 252 | 6.02 | 6H) ppm | | 468 | 352 | 6.92 | (CD3OD) 0.87 (3H, d), 0.95 (3H, d), 1.05-1.10 (1H, m),
1.45-1.50 (1H, m), 1.85-1.90 (1H, m), 1.95-2.05 (2H, m), | | | | | 2.25-2.30 (1H, m), 3.50-3.60 (2H, m), 3.65-3.70 (1H, m), 4.20-4.25 (1H, | | | | | m0, 4.30-4.35 (1H, m), 7.30-7.35 (1H, dd), 8.23 (1H, s), | | 469 | 447 | 2.85 | 8.58-8.60 (1H, d), 8.65 (1H, s), 8.83-8.86 (1H, d).
H NMR (400.0 MHz, DMSO) d 13.96 (s, 1H), 8.60-8.59 (m, | | 409 | 447 | 2.63 | 1H), 8.43-8.36 (m, 1H), 7.94 (d, J = 9.2 Hz, 1H), 7.66 (s, 2H), | | | | | 7.29-7.26 (m, 1H), 7.00-6.95 (m, 1H), 4.56 (d, 1H), 4.30 (d, | | | | | 1H), 3.05 (t, 1H), 2.94-2.61 (m, 3H), 1.94-1.61 (m, 3H), | | | | | 1.45-0.98 (m, 6H), 0.85 (d, J = 6.5 Hz, 3H) and 0.73 (d, J = 6.5 Hz, 3H) ppm | | 470 | 368 | 6.65 | (CD3OD) 0.97-0.98 (3H, d), 1.10-1.12 (3H, d), 1.23 (3H, s), | | | | | 2.15-2.18 (1H, m), 3.30-3.40 (1H, masked), 3.40-3.45 (2H, m), | | | | | 3.50-3.55 (2H, m), 4.58-4.60 (1H, m), 5.08-5.11 (1H, m), | | | | | 7.31-7.35 (1H, dd), 8.33 (1H, s), 8.60-8.61 (1H, d), 8.76 (1H, s), 8.81-8.83 (1H, d). | | | | | V2-7. | In general, compounds of the invention, including compounds in Table 1, are effective for the inhibition of PKCtheta. Selectivity for inhibition of PKCtheta by the compounds of the invention was tested and the results are shown in the following Example. The data obtained shows values for PKC-5 theta isoform selectivity by showing Ki potencies for PKCtheta, PKCdelta and PKCalpha. #### Example 10 #### PKC Theta An assay buffer solution was prepared which consisted of 100 mM HEPES (pH 7.5), 10 mM MgCl₂, 25 mM NaCl, 0.1 mM EDTA and 0.01% Brij. An enzyme buffer containing 15 reagents to final assay concentrations of 0.00001% Triton X-100, 200 μg/mL Phosphatidylserine, 20 μg/mL Diacylglycerol, 360 µM NADH, 3 mM phosphoenolpyruvate, 70 μg/mL pyruvate kinase, 24 μg/mL lactate dehydrogenase, 2 mM DTT. 100 uM substrate peptide (ERMRPRKROGSVR- 20 RRV SEQ ID NO. 1) and 18 nM PKC theta kinase was prepared in assay buffer. To 60 µL of this enzyme buffer, in a 384 well plate, was added 2 µL of VRT stock solution in DMSO. The mixture was allowed to equilibrate for 10 mins at 30° C. The enzyme reaction was initiated by the addition of 5 25 μL stock ATP solution prepared in assay buffer to a final assay concentration of 240 µM. Initial rate data was determined from the rate of change of absorbance at 340 nM (corresponding to stoichiometric consumption of NADH) using a Molecular Devices Spectramax plate reader (Sunnyvale, 30 Calif.) over 15 mins at 30° C. For each Ki determination 12 data points covering the VRT concentration range of 0-20 µM were obtained in duplicate (DMSO stocks were prepared from an initial 10 mM VRT stock with subsequent 1:2 serial dilutions). Ki values were calculated from initial rate data by 35 non-linear regression using the Prism software package (Prism 4.0a, Graphpad Software, San Diego, Calif.). Ki values are represented as A*<0.001 μM, A**<0.01 μM, A<0.05 μΜ, Β<0.5 μΜ, Β*>0.7 μΜ, C*>1.25 μΜ, C**>2.0 μΜ, $C<2.8 \mu M, D>2.8 \mu M.$ A compounds are: 1, 4, 5, 6, 7, 11, 13, 15, 18, 21, 28, 30, 32, 36, 37, 38, 39, 41, 44, 46, 47, 53, 54, 55, 59, 62, 67, 71, 76, 79, 82, 83, 84, 86, 89, 96, 101, 102, 103, 104, 105, 112, 113, 115, 118, 123, 129, 130, 131, 132, 134, 136, 137, 138, 139, 140, 141, 142, 144, 148, 149, 151, 152, 154, 155, 158, 160, 161, 45 162, 163, 164, 168, 169, 170, 174, 175, 176, 178, 180, 181, 183, 184, 186, 187, 188, 189, 192, 195, 197, 203, 204, 205, 206, 207, 208, 218, 220, 228, 229, 230, 231, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 253, 262, 264, 269, 270, 271, 272, 273, 276, 280, 281, 50 282, 286, 291, 293, 299, 300, 308, 317, 318, 323, 324, 344, 345, 346, 347, 350, 351, 366, 367, 370, 374, 376, 378, 380, 385, 386, 388, 390, 391, 392, 400, 401, 403, 407, 409, 410, 421, 422, 426, 427, 432, 434, 435, 436, 437, 438, 441, 447, 451, 452, 453, 454, 455, 461, 464, 468, and 470. A* compounds are: 156, 177, 179, 201, 248, 254, 283, 287, 288, 307, 328, 329, 330, 373, 375, 381, 393, 425, and 445. B compounds are: 2, 3, 8, 9, 12, 14, 16, 17, 19, 25, 26, 29, 31, 33, 34, 35, 40, 42, 43, 45, 48, 49, 52, 56, 57, 58, 61, 64, 65, 66, 100, 106, 107, 108, 110, 114, 116, 117, 119, 120, 121, 124, 126, 133, 143, 145, 146, 147, 150, 153, 157, 159, 165, 167, 171, 172, 185, 190, 191, 193, 196, 198, 199, 200, 209, 210, 219, 221, 224, 225, 226, 227, 243, 244, 256, 260, 263, 265, 310, 313, 314, 316, 322, 325, 327, 331, 337, 338, 339, 342, 343, 348, 349, 352, 357, 360, 362, 364, 365, 368, 369, 377, 274, 277, 278, 284, 285, 289, 290, 292, 294, 296, 297, 301, 65 242 379, 382, 383, 384, 387, 389, 394, 395, 397, 402, 404, 405, 406, 408, 411, 412, 419, 428, 439, 440, 442, 443, 444, 448, 450, 458, 460, 462, 465, 466, 467, and 469. B* compounds are: 20, 22, 23, 27, 50, 51, 60, 69, 73, 81, 90, 93, 94, 111, 122, 127, 128, 135, 166, 173, 182, 194, 202, 211, 212, 213, 214, 215, 216, 217, 222, 223, 232, 233, 255, 257, 258, 259, 261, 266, 267, 268, 275, 279, 298, 302, 303, 304, 305, 306, 312, 315, 319, 320, 321, 332, 333, 334, 336, 340, 341, 353, 354, 355, 356, 358, 359, 361, 363, 371, 372, 396, 10 398, 399, 413, 414, 415, 416, 417, 418, 423, 424, 429, 430, 431, 446, 449, 456, 457, and 463. C compounds are: 10, 24, 63, 95, 109, 125, 295, 309, 335, 420, 433, and 459. No data: 311 and 326. PKC Delta An assay buffer solution was prepared which consisted of 100 mM HEPES (pH 7.5), 10 mM MgCl₂, 25 mM NaCl, 0.1 mM EDTA and 0.01% Brij. An enzyme buffer containing reagents to final assay concentrations of 0.002% Triton X-100, 200 μg/mL Phosphatidylserine, 20 μg/mL Diacylglycerol, 360 µM NADH, 3 mM phosphoenolpyruvate, 70 μg/mL pyruvate kinase, 24 μg/mL lactate dehydrogenase, 2 mM DTT, 150 µM substrate peptide (ERMRPRKRQGSVR-RRV SEQ ID NO. 2) and 46 nM PKC delta kinase was prepared in assay buffer. To 16 µL of this enzyme buffer, in a 384 well plate, was added 1 µL of VRT stock solution in DMSO. The mixture was allowed to equilibrate for 10 mins at 30° C. The enzyme reaction was initiated by the addition of 16 μL stock ATP solution prepared in assay buffer to a final assay concentration of 150 µM. Initial rate data was determined from the rate of change of absorbance at 340 nM (corresponding to stoichiometric consumption of NADH) using a Molecular Devices Spectramax plate reader (Sunnyvale, Calif.) over 15 mins at 30° C. For each Ki determination 12 data points covering the VRT concentration range of 0-20 µM were obtained in duplicate (DMSO stocks were prepared from an initial 10 mM VRT stock with subsequent 1:2 serial dilutions). Ki values were calculated from initial rate data by non-linear regression using the Prism software package (Prism 4.0a, Graphpad Software, San Diego, Calif.). A compounds are: 11, 86, 89, 139, 169, 176, 177, 178, 186, 187, 189, 254, 283, 293, 307, 324, 329, 373, 375, 393, 410, 425, and 445. A** compounds are: 287, 328, and 330. A** compounds are: 287, 328, and 330.B compounds are: 1, 6, 7, 13, 15, 21, 28, 30, 32, 36, 38, 39, 41, 42, 43, 46, 47, 53, 54, 59, 60, 62, 67, 68, 70, 71, 74, 76, 79, 80, 82, 83, 84, 92, 96, 103, 105, 112, 118, 130, 132, 136, 137, 138, 141, 142, 148, 149, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 164, 168, 174, 175, 179, 180, 181, 183, 184, 188, 195, 197, 201, 203, 204, 218, 219, 220, 228, 231, 234, 235, 238, 239, 240, 241, 242, 245, 246, 247, 248, 250, 251, 252, 253, 262, 264, 265, 269, 271, 272, 280, 286, 288, 291, 310, 344, 345, 374, 376, 378, 381, 385, 386, 388, 397, 402, 403, 404, 405, 421, 426, 427, 428, 434, 435, 436, 438, 441, 442, 447, 451, 453, 454, 455, 461 and 464. C compounds are: 3, 8, 9, 14, 18, 19, 25, 31, 33, 37, 40, 44, 48, 49, 52, 55, 56, 58, 61, 64, 66, 75, 78, 88, 95, 104, 108, 110, 115, 116, 120, 123, 129, 131, 134, 143, 144, 146, 170, 192, 68, 70, 72, 74, 75, 77, 78, 80, 85, 87, 88, 91, 92, 97, 98, 99, 60 $206,\, 207,\, 208,\, 237,\, 263,\, 273,\, 282,\, 292,\, 296,\, 299,\, 300,\, 308,\,$ 318, 323, 331, 335, 346, 347, 351, 352, 360, 366, 367, 370, 377, 389, 391, 400, 401, 407, 409, 411, 422, 437, 443, 448, and 462. C* compounds are: 4, 100, 101, 102, 106, 107, 109, 111, 113, 114, 117, 119, 121, 122, 124, 125, 126, 127, 128, 133, 135, 140, 145, 147, 150, 157, 163, 165, 166, 167, 171, 172, 173, 182, 185, 190, 191, 193, 194, 196, 198, 199, 200, 202, 205, 209, 210, 211, 212, 213, 214, 215, 216, 217, 221, 222, 223, 224, 225, 226, 227, 229, 230, 232, 233, 236, 243, 244, 249, 255, 256, 257, 258, 259, 260, 261, 266, 267, 268, 270, 274, 275, 276, 277, 278, 279, 281, 284, 285, 289, 290, 294, 295, 297, 298, 301, 302, 303, 304, 305, 306, 309, 312, 313, 314, 5 315, 316, 317, 319, 320, 321, 322, 325, 327, 332, 333, 334, 336, 337, 338, 339, 340, 341, 342, 343, 348, 349, 350, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 364, 365, 368, 369, 371, 372, 379, 380, 382, 383, 384, 387, 390, 392, 394, 395, 396, 398, 399, 406, 408, 412, 413, 414, 418, 419, 420, 10 423, 424,
429, 430, 431, 432, 433, 439, 440, 444, 446, 449, 450, 452, 456, 457, 458, 459, 466, 467, and 469. C** compounds are: 5, 10, 12, 16, 17, 20, 22, 23, 24, 26, 27, 29, 34, 35, 45, 50, 51, 57, 63, 65, 69, 72, 73, 77, 81, 85, 87, 90, 91, 93, 94, 97, 98, and 99. No Data: 2, 311, 326, 415, 416, 417, 460, 463, 465, 468 and #### PKC Alpha An assay buffer solution was prepared which consisted of 100 mM HEPES (pH 7.5), 10 mM MgCl₂, 25 mM NaCl, 0.1 20 invention, it is apparent that our basic examples may be mM EDTA, 100 µM CaCl₂ and 0.01% Brij. An enzyme buffer containing reagents to final assay concentrations of 0.002% Triton X-100, 100 μ g/mL Phosphatidylserine, 20 μ g/mL Diacylglycerol, 360 µM NADH, 3 mM phosphoenolpyruvate, 70 μg/mL pyruvate kinase, 24 μg/mL lactate dehydrogenase, 2 25 mM DTT, 150 μM substrate peptide (RRRRKGSFKRKA SEQ ID NO. 1) and 4.5 nM PKC alpha kinase was prepared in assay buffer. To $16 \,\mu L$ of this enzyme buffer, in a 384 well plate, was added 1 µL of VRT stock solution in DMSO. The mixture was allowed to equilibrate for 10 mins at 30° C. The $_{30}$ formula: enzyme reaction was initiated by the addition of 16 μL stock ATP solution prepared in assay buffer to a final assay concentration of 130 µM. Initial rate data was determined from the rate of change of absorbance at 340 nM (corresponding to stoichiometric consumption of NADH) using a Molecular 35 Devices Spectramax plate reader (Sunnyvale, Calif.) over 15 mins at 30° C. For each Ki determination 12 data points covering the VRT concentration range of 0-20 µM were obtained in duplicate (DMSO stocks were prepared from an initial 10 mM VRT stock with subsequent 1:2 serial dilu- 40 tions). Ki values were calculated from initial rate data by non-linear regression using the Prism software package (Prism 4.0a, Graphpad Software, San Diego, Calif.). A compounds are: 86. B compounds are: 6, 30, 32, 34, 35, 38, 42, 43, 53, 82, 89, 96, 45 149, 152, 158, 168, 169, 170, 187, 189, 195, 203, 218, 228, 234, 269, 293, 307, 328, 330, 373, 381, 385, 388, 410, 425, 434, 435, 436, 445, 464, 468, and 470. C compounds are: 7, 9, 11, 13, 15, 16, 17, 18, 21, 27, 28, 29, $36, 39, 44, 46, 47, 48, 54, 59, 62, 67, 68, 74, 76, 83, 84, 103, \ \ 50$ 104, 115, 118, 129, 130, 131, 132, 134, 137, 138, 139, 141, $153,\,154,\,159,\,160,\,162,\,172,\,177,\,178,\,179,\,183,\,186,\,188,$ 201, 219, 220, 235, 241, 247, 248, 252, 253, 280, 283, 287, 291, 310, 324, 329, 335, 375, 378, 386, 389, 393, 397, 404, 411, 426, 451, and 454. C* compounds are: 4, 5, 8, 10, 12, 14, 19, 20, 22, 23, 24, 25, 26, 31, 33, 37, 40, 41, 45, 49, 50, 51, 52, 55, 56, 57, 58, 60, 61, 63, 64, 65, 66, 69, 70, 71, 72, 73, 75, 77, 78, 79, 80, 81, 85, 87, 88, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 105, 106, $107,\, 108,\, 109,\, 110,\, 111,\, 112,\, 113,\, 114,\, 116,\, 117,\, 119,\, 120,\ \ \, 60$ $121,\,122,\,123,\,124,\,125,\,126,\,127,\,128,\,133,\,135,\,136,\,140,$ 142, 143, 144, 145, 146, 147, 148, 150, 151, 155, 156, 157, 161, 163, 164, 165, 166, 167, 171, 173, 174, 175, 176, 180, 181, 182, 184, 185, 190, 191, 192, 193, 194, 196, 197, 198, 199, 200, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 65 213, 214, 215, 216, 217, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 236, 237, 238, 239, 240, 242, 243, 244 244, 245, 246, 249, 250, 251, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 281, 282, 284, 285, 286, 288, 289, 290, 292, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 308, 309, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 325, 327, 331, 332, 333, 334, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 374, 376, 377, 379, 380, 382, 383, 384, 387, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 405, 406, 407, 408, 409, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 427, 428, 429, 430, 431, 432, 433, 437, 438, 439, 440, 441, 442, 443, 444, 446, 447, 448, 449, 450, 452, 453, 455, 456, 457, 458, 459, 460, 461, 462, 463, 465, 466, 467, and 469. D compounds are: 3. No Data: 1, 2, 311, and 326. While we have described a number of embodiments of this altered to provide other embodiments that utilize the compounds, methods, and processes of this invention. Therefore, it will be appreciated that the scope of this invention is to be defined by the appended claims rather than by the specific embodiments that have been represented by way of example herein. #### We claim: 1. A compound represented by the following structural or a pharmaceutically acceptable salt thereof, wherein: R_1 is —H, halogen, —OR', —N(R')₂, —C(O)OR', $-C(O)N(R')_2$ --NR'C(O)R',-NR'C(O)OR'. —CN, —NO₂, C1-C10 aliphatic optionally and independently substituted with one or more J_a , or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_b ; R_2 is —H, halogen, —CN, —NO₂, —OR', —N(R')₂, -C(O)OR', $-C(O)N(R')_2$, -NR'C(O)R', -NR'C(O)OR', C1-C10 aliphatic optionally and independently substituted with one or more J_a, or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_b ; ring B is a pyrazinyl or pyrimidinyl; and ring B is optionally substituted with one Y and independently further optionally and independently substituted with one or more J_c ; Y is —Y1-Q1; Y1 is absent, or C1-10 aliphatic, wherein up to three methylene units of Y1 are optionally and independently replaced with G' wherein G' is -O-, -C(O)—, -N(R')—, or $-S(O)_p$ —; and Y1 is optionally and independently substituted with one or more J_d ; Q1 is absent, or a C3-8 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and Q1 is optionally and independently substituted with one or more J_b ; 5 wherein at least one of Y1 and Q1 are not absent when ring B is substituted with Y; ring C is a 3-8-membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, 10 oxygen, and sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and ring C is optionally substituted with one Z and independently further optionally and independently substituted with one or more $J_{\hat{b}}$; Z is -Y2-Q2; Y2 is absent, or C1-10 aliphatic, wherein up to three methylene units of Y2 are optionally and independently replaced with G' wherein G' is -O-, -C(O)-, -N(R')-, or $-S(O)_p-$; and Y2 is optionally and independently substituted with one or more J_{d} ; Q2 is absent, C3-8 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms 30 independently selected from nitrogen, oxygen, and sulfur; and Q2 is optionally and independently substituted with one or more J_e; wherein at least one of Y2 and Q2 are not absent when ring C is substituted with 7: each R' is independently —H, or C1-C6 alkyl optionally and independently substituted with one or more J_a ; each J_a is independently halogen, -OR, $-N(R)_2$, -C(O)R, -C(O)OR, $-C(O)N(R)_2$, -NRC(O)R, -NRC(O)OR, -NRC(O), -NRC(O), -NRC(O), -NRC(O), -NRC(O), -NRC(O), -NR each J_b is independently halogen, -OR, $-N(R)_2$, -C(O)R, -C(O)OR, $-C(O)N(R)_2$, -NRC(O)R, -NRC(O)OR, -NRC(O), -NRC(O two J_b groups on the same atom can join together to form a C3-8 membered partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur, wherein the ring is optionally and independently substituted with one or more J_a ; each J_c is independently halogen, —OR', —C(O)R, —C(O)OR', —C(O)N(R')₂, —NR'C(O)R', —NR'C (O)OR', —CN, —NO₂, or C1-C10 aliphatic optionally and independently substituted with one or more J_a , or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_b ; each J_d is independently halogen, —OH, —N(H)₂, —C(O)H, —C(O)OH, —C(O)N(H)₂, —NHC(O)H, —NHC(O)OH, —CN, or —NO₂; each J_e is independently halogen, —OH, —N(H)₂, —C(O)H, —C(O)OH, —C(O)N(H)₂, —NHC(O)H, —NHC(O)OH, —CN, —NO₂, oxo, C1-10 aliphatic, wherein up to three methylene units are optionally and independently replaced with G' wherein G' is —O—, —C(O)—, —N(R')—, or —S(O)_p— and the aliphatic group is optionally and independently sub- stituted with one or more J_d , or J_e is C3-8 cycloaliphatic optionally and independently substituted with one ore more J_b ; each R is independently —H or C1-C6 alkyl; and each p is independently 0, 1, or 2. 2. A compound of claim 1, represented by the following structural formula: or a pharmaceutically acceptable salt thereof, wherein: R₁ is —H, halogen, —OR', —N(R')₂, —C(O)OR', —C(O)N(R')₂, —NR'C(O)R', —NR'C(O)OR', —CN, —NO₂, C1-C10 aliphatic optionally and independently substituted with one or more J_a, or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_b; R₂ is —H, halogen, —CN, —NO₂, —OR', —N(R')₂, —C(O)OR', —C(O)N(R')₂, —NR'C(O)R', —NR'C (O)OR', C1-C10 aliphatic optionally and independently substituted with one or more J_a, or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_b; ring B is pyrazinyl or pyrimidinyl; and ring B is optionally substituted with one Y and independently further optionally and independently substituted with one or more J.; Y is —Y1-Q1; Y1 is absent, or C1-10 aliphatic, wherein up to three methylene units of Y1 are optionally and independently
replaced with G' wherein G' is —O—, —C(O)—, —N(R')—, or —S(O)_p—; and Y1 is optionally and independently substituted with one or more J_d; Q1 is absent, or a C3-8 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and Q1 is optionally and independently substituted with one or more J_b ; wherein at least one of Y1 and Q1 are not absent when ring B is substituted with Y; ring C is a 3-8-membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and ring C is optionally substituted with one Z and independently further optionally and independently substituted with one or more ${\rm J}_b$; Z is —Y2-Q2; Y2 is absent, or C1-10 aliphatic, wherein up to three methylene units of Y2 are optionally and independently replaced with G' wherein G' is —O—, —C(O)—, —N(R')—, or —S(O)_p—; and Y2 is optionally and independently substituted with one or more J_{ai} ; Q2 is absent, C3-8 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and Q2 is optionally and independently substituted with one or more J_e; wherein at least one of Y2 and Q2 are not absent when ring C is substituted with Z; each R' is independently —H, or C1-C6 alkyl optionally and independently substituted with one or more J_a ; each J_a is independently halogen, —OR, —N(R)₂, —C(O)OR, —C(O)N(R)₂, —NRC(O)R, —NRC(O) OR, —CN, —NO₂, or oxo; each J_b is independently halogen, —OR, —N(R)₂, —C(O)OR, —C(O)N(R)₂, —NRC(O)R, —NRC(O) OR, —CN, —NO₂, oxo, or C1-C6 alkyl optionally and independently substituted with J_a ; or two J_b groups on the same atom can join together to form 25 a C3-8 membered partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur, wherein the ring is optionally and independently substituted with one or more J_a ; each J_e is independently halogen, —OR', —C(O)OR', —C(O)N(R')₂, —NR'C(O)R', —NR'C(O)OR', —CN, —NO₂, or C1-C10 aliphatic optionally and independently substituted with one or more J_a , or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_b ; each J_d is independently halogen, —CN, or —NO₂; each J_e is independently halogen, —CN, —NO₂, oxo, C1-10 aliphatic, wherein up to three methylene units are optionally and independently replaced with G' wherein G' is —O—, —C(O)—, —N(R')—, or —S(O)_p— and the aliphatic group is optionally and independently substituted with one or more J_d , or J_e is C3-8 cycloaliphatic optionally and independently substituted with one ore more J_b ; each R is independently —H or C1-C6 alkyl; and each p is independently 0, 1, or 2. 3. A compound of claim 2, represented by the following structural formula: or a pharmaceutically acceptable salt thereof, wherein: R₁ is —H, halogen, —OR', —N(R')₂, —C(O)OR', 65 —C(O)N(R')₂, —NR'C(O)R', —NR'C(O)OR', —CN, —NO₂, C1-C10 aliphatic optionally and inde- pendently substituted with one or more J_a , or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_h ; R_2 is —H, halogen, —CN, —NO₂, —OR', —N(R')₂, —C(O)OR', —C(O)N(R')₂, —NR'C(O)R', —NR'C (O)OR', C1-C10 aliphatic optionally and independently substituted with one or more J_a , or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_h ; ring B is pyrazinyl or pyrimidinyl; and ring B is optionally substituted with one Y and independently further optionally and independently substituted with one or more J_c ; Y is —Y1-O1: Y1 is absent, or C1-10 aliphatic, wherein up to three methylene units of Y1 are optionally and independently replaced with G' wherein G' is -O-, -C(O)-, -N(R')-, or $-S(O)_p-$; and Y1 is optionally and independently substituted with one or more J_{σ} ; Q1 is absent, or a C3-8 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and Q1 is optionally and independently substituted with one or more J_b ; wherein at least one of Y1 and Q1 are not absent when ring B is substituted with Z; ring \tilde{C} is a 3-8-membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and ring C is optionally substituted with one Z and independently further optionally and independently substituted with one or more J_b ; Z is —Y2-Q2; 50 Y2 is absent, or C1-10 aliphatic, wherein up to three methylene units of Y2 are optionally and independently replaced with G' wherein G' is -O-, -C(O)-, -N(R')-, or $-S(O)_p-$; and Y2 is optionally and independently substituted with one or more J_{σ} ; Q2 is absent, C3-8 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and Q2 is optionally and independently substituted with one or more J_e; wherein at least one of Y2 and Q2 are not absent when ring C is substituted with 7: each R' is independently —H, or C1-C6 alkyl optionally and independently substituted with one or more J_a; each J_a is independently halogen, —OR, —N(R)₂, —C(O)OR, —C(O)N(R)₂, —NRC(O)R, —NRC(O) OR, —CN, —NO₂, or oxo; each J_b is independently halogen, —OR, —N(R)₂, —C(O)OR, —C(O)N(R)₂, —NRC(O)R, —NRC(O) OR, —CN, —NO₂, oxo, or C1-C6 alkyl optionally and independently substituted with J_a, each J_c is independently halogen, —OR', —C(O)OR', —C(O)N(R')₂, —NR'C(O)R', —NR'C(O)OR', —CN, —NO₂, or C1-C10 aliphatic optionally and 30 45 independently substituted with one or more J_a , or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_b ; each J_d is independently halogen, —CN, or —NO₂; each J_e is independently halogen, —CN, —NO₂, oxo, 5 C1-10 aliphatic, wherein up to three methylene units are optionally and independently replaced with G' wherein G' is —O—, —C(O)—, —N(R')—, or —S(O)_p— and the aliphatic group is optionally and independently substituted with one or more J_d , or J_e is C3-8 cycloaliphatic optionally and independently substituted with one ore more J_b ; each R is independently —H or C1-C6 alkyl; and each p is independently 0, 1, or 2. 4. The compound of claim 3 wherein: R_1 is —H, halogen, C1-C10 aliphatic optionally and independently substituted with one or more J_a , or C3-C8 cycloaliphatic optionally and independently substituted with one or more J_b ; and $\rm R_2$ is —H, halogen, C1-C10 aliphatic optionally and independently substituted with one or more $\rm J_a$, or C3-C8 cycloaliphatic optionally and independently substituted with one or more $\rm J_b$. 5. The compound of claim 4 wherein: R₂ is —H. 6. The compound of claim 5 wherein: R₁ is —H, halogen or C1-C10 haloalkyl. 7. The compound of claim 6 wherein the compound represented by the following structural formula: or a pharmaceutically acceptable salt thereof, wherein: each q is independently 0 or 1; and each t is independently 0, or 1-4. **8**. The compound of claim **7** wherein: ring B is pyrimidinyl optionally substituted with one Y and independently further and optionally and independently 50 substituted with one or more J_c. 9. The compound of claim 7 wherein: ring B is pyrazinyl optionally substituted with one Y and independently further and optionally and independently substituted with one or more J_c. 10. The compound of claim 7 wherein: ring C is selected from the group consisting of cyclopropyl, cyclopentyl, cyclobutyl, cyclohexyl, cyclohexenyl, phenyl, pyridyl, pyrazinyl, pyrimidinyl, pyrrolyl, imidazolyl, pyrazolyl, oxazalolyl, oxadiazolyl, thiazolyl, thiazolyl, piperidinyl, piperizinyl, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, azepanyl, diazepanyl, triazepanyl, azocanyl, diazocanyl, triazocanyl, indolyl, indazolyl, benzimidazolyl, quinolyl, quinoxalyl, indolinyl, oxazolidinyl, isoxazolidinyl, thiazolidinyl, isothiazolidinyl, oxazocanyl, oxazepanyl, azabicyclopentyl, azabicyclohexyl, azabicyclohetyl, azabicyclooctyl, azabicyclononyl, azabicyclodecyl, diazabicyclohexyl, diazabicycloheptyl, azetidinyl, isoindolinyl, isoindolyl, dihydroindazolyl, dihydrobenzimidazolyl, morpholinyl, tetrahydropyridyl, dihydropyridyl, tetrahydropyrazinyl, dihydropyrazinyl, tetrahydropyrimidinyl, dihydropyrimidinyl, dihydropyrimidinyl, dihydropyrimidinyl, octahydropyrrolopyrazyl, octahydropyridopyrazyl, octahydropyridopyridyl, otahydropyridopyrazyl, octahydropyridopyridyl, diazabicyclooctyl, diazabicyclononyl, diazabicyclodecyl, thiazepanyl, and thiazocanyl wherein each ring is optionally substituted with one Z and independently further and optionally substituted with one or more \mathbf{J}_b . #### 11. The compound of claim 10 wherein ring C is selected from the group consisting of cyclohexyl, diazabicyclooctyl, phenyl, pyridyl, pyrazinyl, pyrimidinyl, pyrrolyl, imidazolyl, pyrazolyl, oxazalolyl, oxadiazolyl, thiazolyl, azetidinyl, morpholinyl, azepanyl,
diazabicycloheptyl, diazabicyclooctyl, indolyl, tetrahydropyridyl, dihydropyridyl, octahydropyrrolopyrazyl, octahydropyrrolopyridyl, octahydropyridopyrazyl, octahydropyridopyridyl, thiadiazolyl, piperidinyl, piperazinyl, pyrrolidinyl, diazepanyl, and oxazepanyl wherein each ring is optionally substituted with one Z and independently further and optionally substituted with one or more J_b . #### 12. The compound of claim 11 wherein ring C is selected from the group consisting of cyclohexyl, 3,8-diazabicyclo[3.2.1]octane, phenyl, pyridyl, piperidinyl, piperazinyl, diazepanyl, pyrrolidinyl, pyrrolyl, pyrrazolyl, azetidinyl, morpholinyl, azepanyl, 2,5 diazabicycloheptyl, diazabicyclooctyl, indolyl, tetrahydropyridyl, octahydro-1H-pyrrolo[2,3-b]pyrazyl, octahydropyrrolo[1,2-a]pyrazyl, and oxazepanyl wherein each ring is optionally substituted with one Z and independently further and optionally substituted with one or more L #### 13. The compound of claim 12 wherein ring C is selected from the group consisting of piperidinyl, piperazinyl, diazapanyl, pyrrolidinyl, azetidinyl, and azepanyl, wherein each ring is optionally substituted with one Z and independently further and optionally substituted with one or more J_b . **14**. The compound of claim **7** wherein ring C is represented a structural formula selected from the group consisting of: q is 0 or 1; and t is 0 or 1-4. **15**. The compound of claim 7 wherein ring C is represented by a structural formula selected from the group consisting of: q is 0 or 1; and t is 0 or 1-4. 10 20 25 30 35 40 50 55 **16**. The compound of claim **15** wherein ring C is represented by a structural formula represented by: q is 0 or 1; and t is 0 or 1-4. 17. The compound of claim 7 wherein ring C is represented by a structural formula selected from the group consisting of: q is 0 or 1; and t is 0 or 1-4. **18**. The compound of claim **17** wherein ring C is represented by a structural formula represented by: $$(Z)_{q}$$ q is 0 or 1; and t is 0 or 1-4. **19**. The compound of claim **17** wherein ring C is represented by a structural formula represented by: $$\bigvee_{NH}^{(J_b)_t}$$ q is 0 or 1; and t is 0 or 1-4. **20**. The compound of claim 1, represented by a structural formula selected from the group consisting of: -continued M H H N H, N H, $\begin{array}{c} & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$ $\begin{array}{c} & & & \\ & &$ or a pharmaceutically acceptable salt thereof. ${\bf 21.}\,A\,composition\,comprising\,a\,compound\,or\,pharmaceutically\,acceptable\,\,salt\,\,thereof\,\,according\,\,to\,\,claim\,\,{\bf 1,}\,\,and\,\,a^{60}\,\,$ pharmaceutically acceptable carrier, adjuvant, or vehicle. * * * * *